《黑龙江省齐齐哈尔克山县联考2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省齐齐哈尔克山县联考2023届中考数学押题试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABC的面积为8cm2 , AP垂直B的平分线BP于P,则PBC的面积为( )A2cm2B3cm2C4cm2D5cm22如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm
2、的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A60cm2B50cm2C40cm2D30cm23如图,在ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED/BC的是( )ABCD4如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )ABCD5下列命题是真命题的是( )A如实数a,b满足a2b2,则abB若实数a,b满足a0,b0,则ab0C“购买1张彩票就中奖”是不可能事件D三角形的三个内角中最多有一个钝角6 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若150,则2()A20B30C40D507如图,小
3、明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得CAD=60,BCA=30,AC=15 m,那么河AB宽为( )A15 mB mC mD m8已知一元二次方程1(x3)(x+2)=0,有两个实数根x1和x2(x1x2),则下列判断正确的是( )A2x1x23Bx123x2C2x13x2Dx12x239如图,BD为O的直径,点A为弧BDC的中点,ABD35,则DBC()A20B35C15D4510某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是( )AB
4、CD11下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形 (4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A1 B2 C3 D412有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)_ 0,(填“”、“”或“”)14如图,为了测量河宽AB(假设河的两岸平行),测得ACB30,ADB60,CD60m
5、,则河宽AB为 m(结果保留根号)15如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则APB=_ .16如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为_17如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90得到线段CE,线段BD绕点B顺时针旋转90得到线段BF,连接BF,则图中阴影部分的面积是_18如图,CB=CA,ACB=90,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FGCA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:AC=FG;SFAB:S四边形CBFG=1:2;ABC=ABF;AD2=
6、FQAC,其中正确的结论的个数是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)假如你摸一次,你摸到
7、白球的概率P(白球) ;试估算盒子里黑、白两种颜色的球各有多少只?20(6分)如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E(1)求证:AC平分DAB;(2)若BE=3,CE=3,求图中阴影部分的面积21(6分)如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(2,1),B(1,4),C(3,2)画出ABC关于点B成中心对称的图形A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出ABC放大后的图形A2B2C2,并直接写出C2的坐标22(8分)(1)2018+()123(8分)如图,在ABC中,AB=AC,以AB为直径作O
8、交BC于点D,过点D作O的切线DE交AC于点E,交AB延长线于点F(1)求证:BD=CD;(2)求证:DC2=CEAC;(3)当AC=5,BC=6时,求DF的长24(10分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价
9、,并求出最大利润25(10分)已知抛物线yax2bx若此抛物线与直线yx只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1)求此抛物线的解析式;以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y,若这两条抛物线有公共点,求n的取值范围;若a1,将此抛物线向上平移c个单位(c1),当xc时,y1;当1xc时,y1试比较ac与1的大小,并说明理由26(12分)如图,已知一次函数y1=kx+b(k0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点且点A的横坐标和点B的纵坐标都是1求一次函数的解析式;求AOB的面积;观察图象,直接写出y1y1时x的取值范围27(1
10、2分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字1、0、2,它们除了数字不同外,其他都完全相同(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】延长AP交BC于E,
11、根据AP垂直B的平分线BP于P,即可求出ABPBEP,又知APC和CPE等底同高,可以证明两三角形面积相等,即可求得PBC的面积【详解】延长AP交BC于EAP垂直B的平分线BP于P,ABPEBP,APBBPE90在APB和EPB中,APBEPB(ASA),SAPBSEPB,APPE,APC和CPE等底同高,SAPCSPCE,SPBCSPBE+SPCESABC4cm1故选C【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出SPBCSPBE+SPCESABC2、D【解析】标注字母,根据两直线平行,同位角相等可得B=AED,然后求出ADE和EFB相似,根据相似三角形对应边成比例求
12、出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解【详解】解:如图,正方形的边DECF,B=AED,ADE=EFB=90,ADEEFB,设BF=3a,则EF=5a,BC=3a+5a=8a,AC=8a=a,在RtABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,红、蓝两张纸片的面积之和=a8a-(5a)1,=a1-15a1,=a1,=,=30cm1故选D【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等
13、于大三角形的面积减去正方形的面积求解是关键.3、C【解析】根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可【详解】A. 当时,能判断;B.当时,能判断;C.当时,不能判断;D.当时,能判断.故选:C.【点睛】本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.4、B【解析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B5、D【解析】A. 两个数的平方相等,这两个数不一定相等,有正负
14、之分即可判断B. 同号相乘为正,异号相乘为负,即可判断C. “购买1张彩票就中奖”是随机事件即可判断D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2b2,则ab,A是假命题;数a,b满足a0,b0,则ab0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键6、C【解析】由两直线平行,同位角相等,可求得3的度数,然后求得2的度数【详解】1=50,3=1=50,2=9050=40.故选C.【点睛】本题主要考查平行线的性质,熟悉掌
15、握性质是关键.7、A【解析】过C作CEAB,RtACE中,CAD=60,AC=15m,ACE=30,AE=AC=15=7.5m,CE=ACcos30=15=,BAC=30,ACE=30,BCE=60,BE=CEtan60=22.5m,AB=BEAE=22.57.5=15m,故选A【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案8、B【解析】设y=-(x3)(x+2),y1=1(x3)(x+2)根据二次函数的图像性质可知y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-
16、(x3)(x+2),y1=1(x3)(x+2)y=0时,x=-2或x=3,y=-(x3)(x+2)的图像与x轴的交点为(-2,0)(3,0),1(x3)(x+2)=0,y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,-10,两个抛物线的开口向下,x123x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.9、A【解析】根据ABD35就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35,的度数都是70,BD为直径,的度数是18070110,
17、点A为弧BDC的中点,的度数也是110,的度数是110+11018040,DBC20,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力10、D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程详解:设2016年的国内生产总值为1,2017年国内生产总值(GDP)比2016年增长了12%,2017年的国内生产总值为1+12%;2018年比2017年增长7%, 2018年的国内生产总值为(1+12%)
18、(1+7%),这两年GDP年平均增长率为x%, 2018年的国内生产总值也可表示为:,可列方程为:(1+12%)(1+7%)=故选D点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值11、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可详解:等腰三角形的两个底角相等,(1)正确; 对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误; 对角线相等的平行四边形为矩形,(3)错误; 圆的切线垂直于过切点的半径,(4
19、)错误; 平分弦(不是直径)的直径垂直于弦,(5)错误 故选D点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理12、B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:共有6种等可能的结果,一次打开锁的有2种情况,一次打开锁的概率为:故选B点睛:本题考查的是用列表法或树状图法求概率注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比二、填空题:(本大
20、题共6个小题,每小题4分,共24分)13、【解析】根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定mn以及mn的符号,可得结果【详解】解:根据题意得:m1n,且|m|n|,mn1,mn1,(mn)(mn)1故答案为【点睛】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键14、【解析】解:ACB=30,ADB=60,CAD=30,AD=CD=60m,在RtABD中,AB=ADsinADB=60=(m).故答案是:.15、【解析】通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解APB【详解】把PAB绕B点顺时针旋转
21、90,得PBC,则PABPBC,设PA=x,PB=2x,PC=3x,连PP,得等腰直角PBP,PP2=(2x)2+(2x)2=8x2,PPB=45又PC2=PP2+PC2,得PPC=90故APB=CPB=45+90=135故答案为135【点睛】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把PAB顺时针旋转90使得A与C点重合是解题的关键16、【解析】延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值【详解】延长GF与CD交于点D,过点E作交DF于点M, 设正方形的边长为,则, 故答案为:【点睛】考查正多边形的
22、性质,锐角三角函数,构造直角三角形是解题的关键.17、6【解析】过F作FMBE于M,则FME=FMB=90,四边形ABCD是正方形,AB=2,DCB=90,DC=BC=AB=2,DCB=45,由勾股定理得:BD=2,将线段CD绕点C顺时针旋转90得到线段CE,线段BD绕点B顺时针旋转90得到线段BF,DCE=90,BF=BD=2,FBE=90-45=45,BM=FM=2,ME=2,阴影部分的面积=22+42+-=6-.故答案为:6-点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键18、【解析】由正方形的性质得出FAD90,ADA
23、FEF,证出CADAFG,由AAS证明FGAACD,得出ACFG,正确;证明四边形CBFG是矩形,得出SFABFBFGS四边形CBFG,正确;由等腰直角三角形的性质和矩形的性质得出ABCABF45,正确;证出ACDFEQ,得出对应边成比例,得出正确【详解】解:四边形ADEF为正方形,FAD90,ADAFEF,CADFAG90,FGCA,GAFAFG90,CADAFG,在FGA和ACD中,FGAACD(AAS),ACFG,正确;BCAC,FGBC,ACB90,FGCA,FGBC,四边形CBFG是矩形,CBF90,SFABFBFGS四边形CBFG,正确;CACB,CCBF90,ABCABF45,正
24、确;FQEDQBADC,EC90,ACDFEQ,AC:ADFE:FQ,ADFEAD2FQAC,正确;故答案为【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】试题分析:通过题意和表格,可知摸到白球的概率都接近与0.6,因此摸到白球的概率估计值为0.6.20、(1)证明见解析;(2) 【解析】(1)连接OC,如
25、图,利用切线的性质得COCD,则ADCO,所以DAC=ACO,加上ACO=CAO,从而得到DAC=CAO;(2)设O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出COE=60,然后根据扇形的面积公式,利用S阴影=SCOES扇形COB进行计算即可【详解】解:(1)连接OC,如图,CD与O相切于点E,COCD,ADCD,ADCO,DAC=ACO,OA=OC,ACO=CAO,DAC=CAO,即AC平分DAB;(2)设O半径为r,在RtOEC中,OE2+EC2=OC2,r2+27=(r+3)2,解得r=3,OC=3,OE=6,cosCOE=,COE=60
26、,S阴影=SCOES扇形COB=33【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式21、(1)画图见解析;(2)画图见解析,C2的坐标为(6,4)【解析】试题分析:利用关于点对称的性质得出的坐标进而得出答案;利用关于原点位似图形的性质得出对应点位置进而得出答案试题解析:(1)A1BC1如图所示(2)A2B2C2如图所示,点C2的坐标为(6,4)22、-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案【详解】原式=1+13=1【点睛】本题主要
27、考查了实数运算,正确化简各数是解题的关键23、(1)详见解析;(2)详见解析;(3)DF=【解析】(1)先判断出ADBC,即可得出结论;(2)先判断出ODAC,进而判断出CED=ODE,判断出CDECAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论【详解】(1)连接AD,AB是O的直径,ADB=90,ADBC,AB=AC, BD=CD;(2)连接OD,DE是O的切线,ODE=90,由(1)知,BD=CD,OA=OB,ODAC,CED=ODE=90=ADC,C=C,CDECAD,CD2=CEAC;(3)AB=AC=5,由(1)知,ADB=90
28、,OA=OB,OD=AB=,由(1)知,CD=BC=3,由(2)知,CD2=CEAC,AC=5,CE=,AE=AC-CE=5-=,在RtCDE中,根据勾股定理得,DE=,由(2)知,ODAC,DF=【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出CDECAD是解本题的关键24、(1)y是x的一次函数,y=30x+1(2)w=30x2780x31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元【解析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的
29、纵坐标相同(2)销售利润=每个许愿瓶的利润销售量(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润【详解】解:(1)y是x的一次函数,设y=kx+b,图象过点(10,300),(12,240),解得y=30x1当x=14时,y=180;当x=16时,y=120,点(14,180),(16,120)均在函数y=30x+1图象上y与x之间的函数关系式为y=30x+1(2)w=(x6)(30x1)=30x2780x31,w与x之间的函数关系式为w=30x2780x31(3)由题意得:6(30x+1)900,解得x3w=30x2780x31图象对称轴为:a=300,抛物线开
30、口向下,当x3时,w随x增大而减小当x=3时,w最大=4以3元/个的价格销售这批许愿瓶可获得最大利润4元25、(1);n1;(2)ac1,见解析.【解析】(1)1求解b1,将点(3,1)代入平移后解析式,即可;顶点为(1,)关于P(1,n)对称点的坐标是(1,2n),关于点P中心对称的新抛物线y(x+1)2+2nx2+x+2n,联立方程组即可求n的范围;(2)将点(c,1)代入yax2bx+c得到acb+11,bac+1,当1xc时,y1. c,b2ac,ac+12ac,ac1;【详解】解:(1)ax2bxx,ax2(b+1)x1,(b+1)21,b1,平移后的抛物线ya(x1)2b(x1)过
31、点(3,1),4a2b1,a,b1,原抛物线:yx2+x,其顶点为(1,)关于P(1,n)对称点的坐标是(1,2n),关于点P中心对称的新抛物线y(x+1)2+2nx2+x+2n由得:x2+2n1有解,所以n1(2)由题知:a1,将此抛物线yax2bx向上平移c个单位(c1),其解析式为:yax2bx+c过点(c,1),ac2bc+c1 (c1),acb+11,bac+1,且当x1时,yc,对称轴:x,抛物线开口向上,画草图如右所示由题知,当1xc时,y1c,b2ac,ac+12ac,ac1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键26、(
32、1)y1=x+1,(1)6;(3)x1或0x4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为AOB的分割线,求得AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可试题解析:(1)设点A坐标为(1,m),点B坐标为(n,1)一次函数y1=kx+b(k0)的图象与反比例函数y1=的图象交于A、B两点将A(1,m)B(n,1)代入反比例函数y1=可得,m=4,n=4将A(1,4)、B(4,1)代入一次函数y1=kx+b,可得,解得一次函数的解析式为y1=x+1;,(
33、1)在一次函数y1=x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)=11+11+11=1+1+1=6;(3)根据图象可得,当y1y1时,x的取值范围为:x1或0x4考点:1、一次函数,1、反比例函数,3、三角形的面积27、(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-102-1(-1,-1)(-1,0)(-1,2)0(0,-1)(0,0)(0,2)2(2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,P(点M落在如图所示的正方形网格内)=.考点:1列表或树状图求概率;2平面直角坐标系.