《重庆八中2023届高三3月份模拟考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《重庆八中2023届高三3月份模拟考试数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为ABCD2
2、已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( )ABCD3如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为( )ABCD4双曲线的一条渐近线方程为,那么它的离心率为( )ABCD5用一个平面去截正方体,则截面不可能是( )A正三角形B正方形C正五边形D正六边形6在函数:;中,最小正周期为的所有函数为( )ABCD7某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是ABCD8已知非零向量,满足,则与的夹角为( )ABCD9在中,则在方向上的投影是( )A4B3C-4D-310已知纯虚数满足,
3、其中为虚数单位,则实数等于( )AB1CD211设命题:,则为A,B,C,D,12若实数满足不等式组则的最小值等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13双曲线的焦点坐标是_,渐近线方程是_.14命题“对任意,”的否定是 15,则f(f(2)的值为_16已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数()(1)函数在点处的切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.18(12分)如图,在矩形
4、中,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.()求证:平面平面;()求直线与平面所成角的正弦值.19(12分)如图,设A是由个实数组成的n行n列的数表,其中aij (i,j=1,2,3,n)表示位于第i行第j列的实数,且aij1,-1.记S(n,n)为所有这样的数表构成的集合对于,记ri (A)为A的第i行各数之积,cj (A)为A的第j列各数之积令a11a12a1na21a22a2nan1an2ann()请写出一个AS(4,4),使得l(A)=0;()是否存在AS(9,9),使得l(A)=0?说明理由;()给定正整数n,对于所有的AS(n,n),求l(A)的取值集合20
5、(12分)从抛物线C:()外一点作该抛物线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).(1)求抛物线C的方程;(2)求证:四边形是平行四边形.四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.21(12分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.22(10分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有
6、满足条件的的值;若不存在,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B2、B【解析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.3、D【解析】使用不
7、同方法用表示出,结合平面向量的基本定理列出方程解出【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题4、D【解析】根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【详解】双曲线的一条渐近线方程为,可得,双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.5、C【解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C考点:平面的基本性质及推论6、A【解析】逐一考查所给的函数: ,该函数为偶函数,周期 ;将函数 图象x轴下方的图象向上翻折即可得到 的图象,该函数的周期为 ;
8、函数的最小正周期为 ;函数的最小正周期为 ;综上可得最小正周期为的所有函数为.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误一般地,经过恒等变形成“yAsin(x),yAcos(x),yAtan(x)”的形式,再利用周期公式即可7、B【解析】该几何体是直三棱柱和半圆锥的组合体,其中三棱柱的高为2,底面是高和底边均为4的等腰三角形,圆锥的高为4,底面半径为2,则其体积为,.故选B点睛:由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体
9、,然后再根据三视图进行调整.8、B【解析】由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【详解】根据平面向量数量积的垂直关系可得,所以,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B【点睛】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.9、D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,又,在方向上的投影是:,故选D.点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.10、B【解析】先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,
10、所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.11、D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.12、A【解析】首先画出可行域,利用目标函数的几何意义求的最小值【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以故选:A【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域
11、,利用几何意义求值,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】通过双曲线的标准方程,求解,即可得到所求的结果【详解】由双曲线,可得,则,所以双曲线的焦点坐标是,渐近线方程为:故答案为:;【点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题14、存在,使得【解析】试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”考点:命题的否定15、1【解析】先求f(1),再根据f(1)值所在区间求f(f(1).【详解】由题意,f(1)=log3(111)=1,故f(f(1)=f(1)=1e11=1,故答案为:1【点睛】本题考查分段函数求
12、值,考查对应性以及基本求解能力.16、【解析】设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.【详解】如图,设双曲线的左焦点为,连接,由于.所以四边形为矩形,故.在中,由双曲线的定义可得,.故答案为:【点睛】本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极小值为,极大值为.(2)【解析】(1)根据斜线的斜率即可求得参数,再对函数求导,即可求得函数的极值;(2)根据题意,对目标式进行变形,构造函数,根据是单调减函数,分离参数,求函数的最值即可
13、求得结果.【详解】(1)函数的定义域为,可知,解得,可知在,时,函数单调递增,在时,函数单调递减,可知函数的极小值为,极大值为.(2)可以变形为,可得,可知函数在上单调递减,可得,设,可知函数在单调递减,可知,可知参数的取值范围为.【点睛】本题考查由切线的斜率求参数的值,以及对具体函数极值的求解,涉及构造函数法,以及利用导数求函数的值域;第二问的难点在于对目标式的变形,属综合性中档题.18、()详见解析;().【解析】()根据,可得平面,故而平面平面()过作于,则可证平面,故为所求角,在中利用余弦定理计算,再计算【详解】解:()因为,平面,平面所以平面,又平面,所以平面平面;()过作于,则由平
14、面,且平面知,所以平面,从而是直线与平面所成角.因为, 所以,从而.【点睛】本题考查了面面垂直的判定,考查直线与平面所成角的计算,属于中档题19、()答案见解析;()不存在,理由见解析;()【解析】()可取第一行都为-1,其余的都取1,即满足题意;()用反证法证明:假设存在,得出矛盾,从而证明结论;()通过分析正确得出l(A)的表达式,以及从A0如何得到A1,A2,以此类推可得到Ak【详解】()答案不唯一,如图所示数表符合要求.()不存在AS(9,9),使得l(A)=0,证明如下:假如存在,使得.因为,所以,.,.,这18个数中有9个1,9个-1.令.一方面,由于这18个数中有9个1,9个-1
15、,从而,另一方面,表示数表中所有元素之积(记这81个实数之积为m);也表示m,从而,相矛盾,从而不存在,使得.()记这个实数之积为p.一方面,从“行”的角度看,有;另一方面,从“列”的角度看,有;从而有,注意到,下面考虑,.,.,中-1的个数,由知,上述2n个实数中,-1的个数一定为偶数,该偶数记为,则1的个数为2n-2k,所以,对数表,显然.将数表中的由1变为-1,得到数表,显然,将数表中的由1变为-1,得到数表,显然,依此类推,将数表中的由1变为-1,得到数表,即数表满足:,其余,所以,所以,由k的任意性知,l(A)的取值集合为.【点睛】本题为数列的创新应用题,考查数学分析与思考能力及推理
16、求解能力,解题关键是读懂题意,根据引入的概念与性质进行推理求解,属于较难题.20、(1);(2)证明见解析;能,.【解析】(1)根据抛物线的定义,求出,即可求抛物线C的方程;(2)设,写出切线的方程,解方程组求出点的坐标. 设点,直线AB的方程,代入抛物线方程,利用韦达定理得到点的坐标,写出点的坐标,可得线段相互平分,即证四边形是平行四边形;若四边形为矩形,则,求出,即得点Q的坐标.【详解】(1)因为,所以,即抛物线C的方程是. (2)证明:由得,.设, 则直线PA的方程为(),则直线PB的方程为(),由()和()解得:,所以.设点,则直线AB的方程为.由得,则,所以,所以线段PQ被x轴平分,
17、即被线段CD平分.在中,令解得,所以,同理得,所以线段CD的中点坐标为,即,又因为直线PQ的方程为,所以线段CD的中点在直线PQ上,即线段CD被线段PQ平分.因此,四边形是平行四边形.由知,四边形是平行四边形.若四边形是矩形,则,即,解得,故当点Q为,即为抛物线的焦点时,四边形是矩形.【点睛】本题考查抛物线的方程,考查直线和抛物线的位置关系,属于难题.21、(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.【解析】(1)当时,求得其导函数 ,可求得函数的图象在处的切线方程;(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性; (3)当时,由(2)得
18、的单调区间,以当方程有两个不相等的实数根,不妨设,且有,构造函数,分析其导函数的正负得出函数的单调性,得出其最值,所证的不等式可得证.【详解】(1)当时,所以 ,所以函数的图象在处的切线方程为,即;(2)由已知得,令,得,所以当时,当时,所以在上是减函数,在上是增函数;(3)当时,由(2)得在上单调递减,在单调递增,所以,且时,当时,所以当方程有两个不相等的实数根,不妨设,且有,构造函数,则,当时,所以,在上单调递减,且,由 ,在上单调递增, .所以.【点睛】本题考查运用导函数求函数在某点的切线方程,讨论函数的单调性,以及证明不等式,关键在于构造适当的函数,得出其导函数的正负,得出所构造的函数的单调性,属于难度题.22、(1);(2);(3)存在,1.【解析】(1)利用基本量法直接计算即可;(2)利用错位相减法计算;(3),令可得,讨论即可.【详解】(1)设数列的公差为,数列的公比为,因为,所以,即,解得,或(舍去).所以.(2),所以,所以.(3)由(1)可得,所以.因为是数列或中的一项,所以,所以,因为,所以,又,则或.当时,有,即,令.则.当时,;当时,即.由,知无整数解.当时,有,即存在使得是数列中的第2项,故存在正整数,使得是数列中的项.【点睛】本题考查数列的综合应用,涉及到等差、等比数列的通项,错位相减法求数列的前n项和,数列中的存在性问题,是一道较为综合的题.