《浙江省宁波诺丁汉大学附中2022-2023学年高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省宁波诺丁汉大学附中2022-2023学年高考仿真模拟数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1关于函数,有下述三个结论:函数的一个周期为;函数在上单调递增;函数的值域为.其中所有正确结论的编号是( )ABCD2明代数
2、学家程大位(15331606年),有感于当时筹算方法的不便,用其毕生心血写出算法统宗,可谓集成计算的鼻祖如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题执行该程序框图,若输出的的值为,则输入的的值为( )ABCD3已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于( )A第一象限B第二象限C第三象限D第四象限4已知集合,集合,则AB或CD5设集合,则 ()ABCD6已知复数z,则复数z的虚部为( )ABCiDi7音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦
3、函数的和,其中频率最低的一项是基本音,其余的为泛音由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波下列函数中不能与函数构成乐音的是( )ABCD8若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是( )ABCD9关于的不等式的解集是,则关于的不等式的解集是( )ABCD10已知复数z满足iz2+i,则z的共轭复数是()A12iB1+2iC12iD1+2i11已知函数是定义在上的奇函数,函数满足,且时,则( )A2BC1D12已知函数()的部分图象如图所示,且,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数在区间内有且
4、仅有两个零点,则实数的取值范围是_.14在中,则_,的面积为_15(5分)有一道描述有关等差与等比数列的问题:有四个和尚在做法事之前按身高从低到高站成一列,已知前三个和尚的身高依次成等差数列,后三个和尚的身高依次成等比数列,且前三个和尚的身高之和为cm,中间两个和尚的身高之和为cm,则最高的和尚的身高是_ cm16锐角中,角,所对的边分别为,若,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,已知抛物线:与圆: ()相交于, , ,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.18(12分)在平面直角
5、坐标系xOy中,曲线C1的参数方程为 (为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围19(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.20(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”
6、的调查问卷,参与调查的对象年龄层次在2544岁之间.收集到的相关数据如下:来A城市发展的理由人数合计自然环境1.森林城市,空气清新2003002.降水充足,气候怡人100人文环境3.城市服务到位1507004.创业氛围好3005.开放且包容250合计10001000(1)根据以上数据,预测400万2544岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;(3)在选择“自然环境”作为来A城市发展的理由的300
7、人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?自然环境人文环境合计男女合计附:,.P()0.0500.0100.001k3.8416.63510.82821(12分)已知函数.(1)若,且,求证:;(2)若时,恒有,求的最大值.22(10分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数(1)写出与的直角坐标方程;(2)在什么范围内取值时,与有交点参考答案一、选择题:本题共12小题,每小题5分,共60分。在
8、每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】用周期函数的定义验证.当时,再利用单调性判断.根据平移变换,函数的值域等价于函数的值域,而,当时,再求值域.【详解】因为,故错误;当时,所以,所以在上单调递增,故正确;函数的值域等价于函数的值域,易知,故当时,故正确.故选:C.【点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.2、C【解析】根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得故选:【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.3、D【解析】根据复数运算,求得,再求其
9、对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.4、C【解析】由可得,解得或,所以或,又,所以,故选C5、B【解析】直接进行集合的并集、交集的运算即可【详解】解:; 故选:B【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.6、B【解析】利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.7、C【解析】由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音
10、的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.8、D【解析】由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解【详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,故时取得极大值,也即为最大值,当时,;当时,所以满足条件故选:D【点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.9、A【解析】由的解集,可知及,进而可求出方程的解,从而可求
11、出的解集.【详解】由的解集为,可知且,令,解得,因为,所以的解集为,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.10、D【解析】两边同乘-i,化简即可得出答案【详解】iz2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为11、D【解析】说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值【详解】由知函数的周期为4,又是奇函数,又,故选:D【点睛】本题考查函数的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础12、A【解析】是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得【
12、详解】由题意,函数在轴右边的第一个零点为,在轴左边第一个零点是,的最小值是故选:A.【点睛】本题考查三角函数的周期性,考查函数的对称性函数的零点就是其图象对称中心的横坐标二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.14、 【解析】利用余弦定理可求得的值,进而可得出的值,最后利用三角形
13、的面积公式可得出的面积.【详解】由余弦定理得,则,因此,的面积为.故答案为:;.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积的计算,考查计算能力,属于基础题.15、【解析】依题意设前三个和尚的身高依次为,第四个(最高)和尚的身高为,则,解得,又,解得,又因为成等比数列,则公比,故.16、【解析】由余弦定理,正弦定理得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,.故答案为【点睛】本题主要考查了正弦定理和余弦定理的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或
14、演算步骤。17、(1)(2)点的坐标为【解析】将抛物线方程与圆方程联立,消去得到关于的一元二次方程, 抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【详解】(1)联立抛物线与圆的方程消去,得.由题意可知在上有两个不等的实数根.所以解得,所以的取值范围为.(2)根据(1)
15、可设方程的两个根分别为,(),则,且,所以直线、的方程分别为,,联立方程可得,点的坐标为,因为四边形为等腰梯形,所以,令,则,所以,因为,所以当时,;当时,, 所以函数在上单调递增,在上单调递减,即当时,四边形的面积取得最大值,因为,点的坐标为,所以当四边形的面积取得最大值时,点的坐标为.【点睛】本题考查利用导数求函数的极值与最值、抛物线及其标准方程及直线与圆锥曲线相关的最值问题;考查运算求解能力、转化与化归能力和知识的综合运用能力;利用函数的思想求圆锥曲线中面积的最值是求解本题的关键;属于综合型强、难度大型试题.18、(1)C1:y21,C2 :x2+(y2)21;(2)0,1【解析】()消
16、去参数可得C1的直角坐标方程,易得曲线C2的圆心的直角坐标为(0,2),可得C2的直角坐标方程;()设M(3cos,sin),由三角函数和二次函数可得|MC2|的取值范围,结合圆的知识可得答案【详解】(1)消去参数可得C1 的普通方程为y21,曲线C2 是圆心为(2,),半径为1 的圆,曲线C2 的圆心的直角坐标为(0,2),C2 的直角坐标方程为x2+(y2)21; (2)设M(3cos,sin),则|MC2| ,1sin1,1|MC2|,由题意结合图象可得|MN|的最小值为110,最大值为1,|MN|的取值范围为0,1【点睛】本题考查椭圆的参数方程,涉及圆的知识和极坐标方程,属中档题19、
17、(1)当时,在上单调递减,在上单调递增;当时, 在上单调递增;(2).【解析】(1)求出函数的定义域和导函数, ,对讨论,得导函数的正负,得原函数的单调性;(2)法一: 由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得 ,可得的范围;法二:由得,化为令(),研究函数的单调性,可得的取值范围.【详解】(1)的定义域为,当时,由得,得, 在上单调递减,在上单调递增;当时,恒成立,在上单调递增;(2)法一: 由得,令(),则,在上单调递减,即,令,则,在上单调递增,在上单调递减,所以,即, (*)当时,(*)式恒成立,即恒成立,满足题意法二:由得,令(),则,在上单调递减,即,当时,
18、由()知在上单调递增,恒成立,满足题意当时,令,则,所以在上单调递减,又,当时,使得,当时,即,又,不满足题意,综上所述,的取值范围是【点睛】本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.20、(1)(万)(2)(3)填表见解析;有的把握认为性别与“自然环境”或“人文环境”的选择有关【解析】(1)在1000个样本中选择“创业氛围好”来A城市发展的有300个,根据频率公式即可求得结果.(2) 由分层抽样的知识可得,抽取6人中,4人选择“森林城市,空气清新”,2人选择“降水充足,气候怡人”求出对应的基本事件数,即可求得结果.(3)计算的值,对照临界值表可得答案
19、.【详解】(1)(万)(2)从所抽取选择“自然环境”作为来A城市发展理由的300人中,利用分层抽样的方法抽取6人,其中4人是选择“森林城市,空气清新”,2人是选择“降水充足,气候怡人”.记事件A为选出的3人中至少有2人选择“森林城市,空气清新”,则,.(3)列联表如下自然环境人文环境合计男100400500女200300500合计3007001000,所以有的把握认为性别与“自然环境”或“人文环境”的选择有关.【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、考查学生的综合分析与计算能力,难度较易.21、(1)见解析;(2).【解析】(1)利用导数分析函数的单调性,并设,则
20、,将不等式等价转化为证明,构造函数,利用导数分析函数在区间上的单调性,通过推导出来证得结论;(2)构造函数,对实数分、,利用导数分析函数的单调性,求出函数的最小值,再通过构造新函数,利用导数求出函数的最大值,可得出的最大值.【详解】(1),所以,函数单调递增,所以,当时,此时,函数单调递减;当时,此时,函数单调递增.要证,即证.不妨设,则,下证,即证,构造函数,所以,函数在区间上单调递增,即,即,且函数在区间上单调递增,所以,即,故结论成立;(2)由恒成立,得恒成立,令,则.当时,对任意的,函数在上单调递增,当时,不符合题意;当时,;当时,令,得,此时,函数单调递增;令,得,此时,函数单调递减.令,设,则.当时,此时函数单调递增;当时,此时函数单调递减.所以,函数在处取得最大值,即.因此,的最大值为.【点睛】本题考查利用导数证明不等式,同时也考查了利用导数求代数式的最值,构造新函数是解答的关键,考查推理能力,属于难题.22、(1),(2)【解析】(1)利用,代入可求;消参可得直角坐标方程. (2)将的参数方程代入的直角坐标方程,与有交点,可得,解不等式即可求解.【详解】(1)(2)将的参数方程代入的直角坐标方程得:与有交点,即【点睛】本题考查了极坐标方程与普通方程的转化、参数方程与普通方程的转化、直线与圆的位置关系的判断,属于基础题.