《郑州市第一中学2022-2023学年高考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《郑州市第一中学2022-2023学年高考数学五模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1总体由编号为01,02,.,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行
2、的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A23B21C35D322已知复数,为的共轭复数,则( )ABCD3已知集合,则( )ABCD4下列不等式正确的是( )ABCD5射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,结果精确到0.001)A0.110B0.112CD6如果直线
3、与圆相交,则点与圆C的位置关系是( )A点M在圆C上B点M在圆C外C点M在圆C内D上述三种情况都有可能7在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( )A60种B70种C75种D150种8已知,则的值等于( )ABCD9若,则函数在区间内单调递增的概率是( )A B C D10在三棱锥中,且分别是棱,的中点,下面四个结论:;平面;三棱锥的体积的最大值为;与一定不垂直.其中所有正确命题的序号是( )ABCD11定义在上的函数与其导函数的图象如图所示,设为坐标原点,、四点的横坐标依次为、,则函数的单调递减区间是( )AB
4、CD12设命题:,则为A,B,C,D,二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为_14若的展开式中所有项的系数之和为,则_,含项的系数是_(用数字作答).15下图是一个算法的流程图,则输出的x的值为_16若,则=_,=_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在多面体中,四边形是正方形,平面,为的中点.(1)求证:;(2)求平面与平面所成角的正弦值.18(12分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核记表示学生的考核成绩,并规定
5、为考核优秀为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:()从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;()从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;()记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由19(12分)已知函数,.(1)当时,求函数的值域;(2),求实数的取值范围.20(12分)如图,平面四边形中,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面
6、所成角的正弦值.21(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.22(10分)已知函数.(1)若函数的图象与轴有且只有一个公共点,求实数的取值范围;(2)若对任意成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据随机数表法的抽样方法,确定选出来的第5个个
7、体的编号.【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,其中落在编号01,02,39,40内的有:16,26,16,24,23,21,依次不重复的第5个编号为21.故选:B【点睛】本小题主要考查随机数表法进行抽样,属于基础题.2、C【解析】求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.3、B【解析】求出集合,利用集合的基本运算即可得到结论.【详解
8、】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.4、D【解析】根据,利用排除法,即可求解【详解】由,可排除A、B、C选项,又由,所以故选D【点睛】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题5、C【解析】根据题意知,,代入公式,求出即可.【详解】由题意可得,因为,所以,即.所以这种射线的吸收系数为.故选:C【点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型
9、函数的性质,以及解指数型方程;属于中档题.6、B【解析】根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即也就是点到圆的圆心的距离大于半径即点与圆的位置关系是点在圆外故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题7、C【解析】根据题意,分别计算“从6名男干部中选出2名男干部”和“从5名女干部中选出1名女干部”的取法数,由分步计数原理计算可得答案【详解】解:根据题意,从6名男干部中选出2名男干部,有种取法,从5名女干部中选出1名女干部,有种取法,则有种不同的选法;故选:C【点睛】本题考查排列组合的
10、应用,涉及分步计数原理问题,属于基础题8、A【解析】由余弦公式的二倍角可得,再由诱导公式有,所以【详解】由余弦公式的二倍角展开式有又故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题9、B【解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.10、D【解析】通过证明平面,证得;通过证明,证得平面;求得三棱锥体积的最大值,由此判断的正确性;利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,又,所以平面,所以,故正确;因为,所以平面,故正确;当平面与平面垂直时,最大,最大值为,故错误;若与垂直,又
11、因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.11、B【解析】先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.【详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交点,合乎题意.对函数求导得,由得,由图象可知,
12、满足不等式的的取值范围是,因此,函数的单调递减区间为.故选:B.【点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.12、D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设直线l的方程为,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程【详解】设直线由题设得,故,由题设可
13、得由可得,则,从而,得,所以l的方程为,故答案为:【点睛】本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.14、 【解析】的展开式中所有项的系数之和为,项的系数是 ,故答案为(1),(2).15、1【解析】利用流程图,逐次进行运算,直到退出循环,得到输出值.【详解】第一次:x4,y11,第二次:x5,y32,第三次:x1,y14,此时141013,输出x,故输出x的值为1故答案为:.【点睛】本题主要考查程序框图的识别,“还原现场”是求解这类问题的良方,侧重考查逻辑推理的核心素养.16、1 0 【解析】根据换底公式计算即可得解;根据同底对数加法法
14、则,结合的结果即可求解.【详解】由题:,则;由可得:.故答案为:1,0【点睛】此题考查对数的基本运算,涉及换底公式和同底对数加法运算,属于基础题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)首先证明,平面.即可得到平面,.(2)以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系,分别求出平面和平面的法向量,带入公式求解即可.【详解】(1)平面,平面,.又四边形是正方形,.,平面.平面,.又,为的中点,.,平面.平面,.(2)平面,平面.以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系.如图所示:则,.,.设为平面的
15、法向量,则,得,令,则.由题意知为平面的一个法向量,平面与平面所成角的正弦值为.【点睛】本题第一问考查线线垂直,先证线面垂直时解题关键,第二问考查二面角,建立空间直角坐标系是解题关键,属于中档题.18、()()()见解析【解析】()根据茎叶图求出满足条件的概率即可;()结合图表得到6人中有2个人考核为优,从而求出满足条件的概率即可;()求出满足的成绩有16个,求出满足条件的概率即可【详解】解:()设这名学生考核优秀为事件,由茎叶图中的数据可以知道,30名同学中,有7名同学考核优秀,所以所求概率约为()设从图中考核成绩满足的学生中任取2人,至少有一人考核成绩优秀为事件,因为表中成绩在的6人中有2
16、个人考核为优,所以基本事件空间包含15个基本事件,事件包含9个基本事件,所以()根据表格中的数据,满足的成绩有16个,所以所以可以认为此次冰雪培训活动有效【点睛】本题考查了茎叶图问题,考查概率求值以及转化思想,是一道常规题19、(1);(2).【解析】(1)将代入函数的解析式,将函数的及解析式变形为分段函数,利用二次函数的基本性质可求得函数的值域;(2)由参变量分离法得出在区间内有解,分和讨论,求得函数的最大值,即可得出实数的取值范围.【详解】(1)当时,.当时,;当时,.函数的值域为;(2)不等式等价于,即在区间内有解当时,此时,则;当时,函数在区间上单调递增,当时,则.综上,实数的取值范围
17、是.【点睛】本题主要考查含绝对值函数的值域与含绝对值不等式有解的问题,利用绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键,考查分类讨论思想的应用,属于中等题.20、(1)见解析;(2)【解析】(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于是的中点,所以,从而可证得结论;(2)由于在中,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.【详解】(1)由,所以平面四边形为直角梯形,设,因为.所以在中,则,又,所以,由,所以为等边三角形,又是的中点,所以,又平面,则有平面,而平面,故平面平面.(2
18、)解法一:在中,取中点,所以,由(1)可知平面平面,平面平面,所以平面,以为坐标原点,方向为轴方向,建立如图所示的空间直角坐标系,则,设平面的法向量,由得取,则设直线与平面所成角大小为,则,故直线与平面所成角的正弦值为. 解法二:在中,取中点,所以,由(1)可知平面平面,平面平面,所以平面,过作于,连,则由平面平面,所以,又,则平面,又平面所以,在中,所以,设到平面的距离为,由,即,即,可得,设直线与平面所成角大小为,则.故直线与平面所成角的正弦值为.【点睛】此题考查的是立体几何中的证明面面垂直和求线面角,考查学生的转化思想和计算能力,属于中档题.21、(1),(1,2);(2)存在,【解析】
19、(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;(2)直线与抛物线方程联立,利用根与系数的关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.【详解】(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为 抛物线的焦点坐标,由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,可得,解得或(舍去),故抛物线C的方程为又由消去y得,因为直线与抛物线C相切,所以,解得,此时,所以点P坐标为(1,2)(2)设存在满足条件的实数,点,联立,消去x得,则,依题意
20、,可得,解得m-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在实数=满足条件.【点睛】本题主要考查抛物线方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.22、(1)(2)【解析】(1)求出及其导函数,利用研究的单调性和最值,根据零点存在定理和零点定义可得的范围(2)令,题意说明时,恒成立.同样求出导函数,由研究的单调性,通过分类讨论可得的单调性得出结论【详解】解(1)函数所以
21、讨论:当时,无零点;当时,所以在上单调递增.取,则又,所以,此时函数有且只有一个零点;当时,令,解得(舍)或当时,所以在上单调递减;当时,所以在上单调递增.据题意,得,所以(舍)或综上,所求实数的取值范围为.(2)令,根据题意知,当时,恒成立.又讨论:若,则当时,恒成立,所以在上是增函数.又函数在上单调递增,在上单调递增,所以存在使,不符合题意.若,则当时,恒成立,所以在上是增函数,据求解知,不符合题意.若,则当时,恒有,故在上是减函数,于是“对任意成立”的充分条件是“”,即,解得,故综上,所求实数的取值范围是.【点睛】本题考查函数零点问题,考查不等式恒成立问题,考查用导数研究函数的单调性解题关键是通过分类讨论研究函数的单调性本题难度较大,考查掌握转化与化归思想,考查学生分析问题解决问题的能力