辽宁省葫芦岛市连山区2023届中考二模数学试题含解析.doc

上传人:茅**** 文档编号:88313495 上传时间:2023-04-25 格式:DOC 页数:20 大小:626KB
返回 下载 相关 举报
辽宁省葫芦岛市连山区2023届中考二模数学试题含解析.doc_第1页
第1页 / 共20页
辽宁省葫芦岛市连山区2023届中考二模数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《辽宁省葫芦岛市连山区2023届中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省葫芦岛市连山区2023届中考二模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t5t2,汽车刹车后停下来前进的距离是()A10m B20m C30m D40m2在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )ABCD3袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等

2、完全相同,在看不到球的条件下,随机地从袋子中摸出三个球下列事件是必然事件的是( )A摸出的三个球中至少有一个球是黑球B摸出的三个球中至少有一个球是白球C摸出的三个球中至少有两个球是黑球D摸出的三个球中至少有两个球是白球4解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=45某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=4x+440,要获得最大利润,该商品的售价应定为A60元 B70元 C80元 D90元6如图是某几何体的三视图及相关数据,则该几何体的全面积是()A15

3、B24C20D107对于点A(x1,y1),B(x2,y2),定义一种运算:例如,A(5,4),B(2,3),若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】A在同一条直线上 B在同一条抛物线上C在同一反比例函数图象上 D是同一个正方形的四个顶点8如图,在平面直角坐标系xOy中,A(2,0),B(0,2),C的圆心为点C(1,0),半径为1若D是C上的一个动点,线段DA与y轴交于E点,则ABE面积的最小值是()A2 B C D9在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”已知O是以原点为

4、圆心,半径为 圆,则O的“整点直线”共有( )条A7B8C9D1010估计+1的值在()A2和3之间B3和4之间C4和5之间D5和6之间二、填空题(共7小题,每小题3分,满分21分)11将一个含45角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为_12从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是_13关于x的一元二次方程有实数根,则a的取值范围是 _.14如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范

5、围是_15计算(2)3+(3)_.16二次函数的图象与y轴的交点坐标是_17计算:=_.三、解答题(共7小题,满分69分)18(10分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形ABCD,点 C的对应点 C恰好落在CB的延长线上,边AB交边 CD于点E(1)求证:BCBC;(2)若 AB2,BC1,求AE的长19(5分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.(1)求抛物线的解析式;(2)点P为直线AC上方抛物线上一动点;连接PO,交AC于点E,求的最大值;过点P作PFAC,垂足为点F,连接PC,是否存在点P,使PFC中的一个角等于CAB的2倍?若存在,请

6、直接写出点P的坐标;若不存在,请说明理由.20(8分)先化简,再求值:(1+),其中x=+121(10分)如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作ABx轴,交y轴于点D,交该二次函数图象于点B,连结BC(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m0)个单位,使平移后得到的二次函数图象的顶点落在ABC的内部(不包括ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)22(10分)

7、某水果批发市场香蕉的价格如下表购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?23(12分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年

8、达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?24(14分)如图,O是ABC的外接圆,点O在BC边上,BAC的平分线交O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P求证:PD是O的切线;求证:ABDDCP;当AB=5cm,AC=12cm时,求线段PC的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】利用配方法求二次函数最值的方法解答即可【详解】s=20t-5t2=-5(t-2)2+20,汽车刹车后到停下来前进

9、了20m故选B【点睛】此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键2、C【解析】根据轴对称图形和中心对称图形的定义进行分析即可.【详解】A、不是轴对称图形,也不是中心对称图形故此选项错误;B、不是轴对称图形,也不是中心对称图形故此选项错误;C、是轴对称图形,也是中心对称图形故此选项正确;D、是轴对称图形,但不是中心对称图形故此选项错误故选C【点睛】考点:1、中心对称图形;2、轴对称图形3、A【解析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误故

10、选A4、B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断【详解】方程两边同时乘以(x-2),得13(x2)=4,故选B【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.5、C【解析】设销售该商品每月所获总利润为w,则w=(x50)(4x+440)=4x2+640x22000=4(x80)2+3600,当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C6、B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=(

11、)2=9,圆锥的侧面积=56=15,所以圆锥的全面积=9+15=24故选B点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了三视图7、A。【解析】对于点A(x1,y1),B(x2,y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又,。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,互不重合的四点C,D,E,F在同一条直线上。故选A。8、C【解析】当C与AD相切时,ABE面积最大,连接CD,则CDA=90,A(2,0),B(0,2),C的圆心为

12、点C(-1,0),半径为1,CD=1,AC=2+1=3,AD=2,AOE=ADC=90,EAO=CAD,AOEADC,即,OE=,BE=OB+OE=2+SABE=BE?OA=(2+)2=2+故答案为9、D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.10、B【解析】分析:直接利用23,进而得出答案详解:23,3+14,故选B点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键二、填空题(共7小题,每小题3分,满分

13、21分)11、【解析】先求得ACO=60,得出OAC=30,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B的坐标【详解】解:ACB=45,BCB=75,ACB=120,ACO=60,OAC=30,AC=2OC,点C的坐标为(1,0),OC=1,AC=2OC=2,ABC是等腰直角三角形,B点的坐标为【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题12、【解析】共有3种等可能的结果,它们是:3,2,3;4, 2, 3;5, 2, 3;其中三条线段能够成三角形的结果为2,所以三条线段能构成三角形的概

14、率= .故答案为.13、a1且a0【解析】关于x的一元二次方程有实数根, ,解得:,a的取值范围为:且 .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此 ;(2)这道一元二次方程有实数根,因此 ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.14、【解析】先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-10;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=的图象经过一、三象限,k0,从而可以求出k的取值范围【详解】y=(k-1)x的函数值y随x的增大而减小,k-10k1而y=(k-1)x的图象与反比例函数y=的图象没有公共点

15、,k0综合以上可知:0k1故答案为0k1【点睛】本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键15、-9【解析】根据有理数的计算即可求解.【详解】(2)3+(3)=-6-3=-9【点睛】此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.16、【解析】求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标【详解】把代入得:,该二次函数的图象与y轴的交点坐标为,故答案为【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为117、2【解析】利用平方差公式求解,即可求得答案【详解】=()2-()2=5-3=2.故答案为2.【

16、点睛】此题考查了二次根式的乘除运算此题难度不大,注意掌握平方差公式的应用三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)AE=【解析】(1)连结 AC、AC,根据矩形的性质得到ABC90,即 ABCC, 根据旋转的性质即可得到结论;(2)根据矩形的性质得到 ADBC,DABC90,根据旋转的性质得到 BCAD,ADAD,证得 BCAD,根据全等三角形的性质得到 BEDE,设 AEx,则 DE2x,根据勾股定理列方程即可得到结论【详解】解:(1)连结 AC、AC,四边形 ABCD为矩形,ABC90,即 ABCC,将矩形 ABCD 绕点A顺时针旋转,得到矩形 ABCD,ACAC,B

17、CBC;(2)四边形 ABCD 为矩形,ADBC,DABC90,BCBC,BCAD,将矩形 ABCD 绕点 A 顺时针旋转,得到矩形 ABCD,ADAD,BCAD,在ADE 与CBE中ADECBE,BEDE,设 AEx,则 DE2x,在 RtADE 中,D90, 由勾定理,得 x2(2x)21,解得 x,AE 【点睛】本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等, 熟练掌握性质定理是解题的关键19、(1);(2)有最大值1;(2,3)或(,)【解析】(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得,根

18、据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;根据勾股定理的逆定理得到ABC是以ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,PCF=2BAC=DGC+CDG,情况二,FPC=2BAC,解直角三角形即可得到结论【详解】(1)当x=0时,y=2,即C(0,2),当y=0时,x=4,即A(4,0),将A,C点坐标代入函数解析式,得,解得,抛物线的解析是为;(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N,直线PNy轴,PEMOEC,把x=0代

19、入y=-x+2,得y=2,即OC=2,设点P(x,-x2+x+2),则点M(x,-x+2),PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,=,0x4,当x=2时,=有最大值1A(4,0),B(-1,0),C(0,2),AC=2,BC=,AB=5,AC2+BC2=AB2,ABC是以ACB为直角的直角三角形,取AB的中点D,D(,0),DA=DC=DB=,CDO=2BAC,tanCDO=tan(2BAC)=,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,PCF=2BAC=PGC+CPG,CPG=BAC,tanCPG=tanBAC=,即,令P(a,-a2

20、+a+2),PR=a,RC=-a2+a,a1=0(舍去),a2=2,xP=2,-a2+a+2=3,P(2,3)情况二,FPC=2BAC,tanFPC=,设FC=4k,PF=3k,PC=5k,tanPGC=,FG=6k,CG=2k,PG=3k,RC=k,RG=k,PR=3k-k=k,a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),综上所述:P点坐标是(2,3)或(,)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏20、,1+ 【解析】运用公

21、式化简,再代入求值.【详解】原式= ,当x=+1时,原式=【点睛】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法21、(1)y=x2+2x+4;M(1,5);(2)2m4;(3)P1(),P2(),P3(3,1),P4(3,7)【解析】试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得MCP=90,则若PCM与BCD相似,则要进行分类讨论,分成PCMBD

22、C或PCMCDB两种,然后利用边的对应比值求出点坐标试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=x2+bx+c得,解得 二次函数解析式为y=x2+2x+4, 配方得y=(x1)2+5,点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得:直线AC的解析式为y=x+4,如图所示,对称轴直线x=1与ABC两边分别交于点E、点F把x=1代入直线AC解析式y=x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)15m3,解得2m4;(3)连接MC,作MGy轴并延长交AC于点N,则点G坐标为(0,5) MG=1,GC=5

23、4=1MC=, 把y=5代入y=x+4解得x=1,则点N坐标为(1,5),NG=GC,GM=GC, NCG=GCM=45, NCM=90,由此可知,若点P在AC上,则MCP=90,则点D与点C必为相似三角形对应点若有PCMBDC,则有BD=1,CD=3, CP=, CD=DA=3, DCA=45,若点P在y轴右侧,作PHy轴, PCH=45,CP= PH=把x=代入y=x+4,解得y=, P1();同理可得,若点P在y轴左侧,则把x=代入y=x+4,解得y= P2();若有PCMCDB,则有 CP=3 PH=3=3,若点P在y轴右侧,把x=3代入y=x+4,解得y=1;若点P在y轴左侧,把x=

24、3代入y=x+4,解得y=7P3(3,1);P4(3,7)所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(3,7)考点:二次函数综合题22、第一次买14千克香蕉,第二次买36千克香蕉【解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1对张强买的香蕉的千克数,应分情况讨论:当0x20,y40;当0x20,y40当20x3时,则3y2【详解】设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0x3则当0x20,y40,则题意可得解得当0x20,y40时,由题意可得解得(不合题意,舍去)当20x3时,则3y2

25、,此时张强用去的款项为5x+5y=5(x+y)=550=301(不合题意,舍去);当20x40 y40时,总质量将大于60kg,不符合题意,答:张强第一次购买香蕉14kg,第二次购买香蕉36kg【点睛】本题主要考查学生分类讨论的思想找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答23、(1)20%;(2)12.1【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,201

26、7年的人均借阅量,进一步求得a的值至少是多少试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)108001310=8(本)129601440=9(本)(98)8100%=12.1%故a的值至少是12.1考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题24、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm【

27、解析】【分析】(1)先判断出BAC=2BAD,进而判断出BOD=BAC=90,得出PDOD即可得出结论;(2)先判断出ADB=P,再判断出DCP=ABD,即可得出结论;(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用ABDDCP得出比例式求解即可得出结论【详解】(1)如图,连接OD,BC是O的直径,BAC=90,AD平分BAC,BAC=2BAD,BOD=2BAD,BOD=BAC=90,DPBC,ODP=BOD=90,PDOD,OD是O半径,PD是O的切线;(2)PDBC,ACB=P,ACB=ADB,ADB=P,ABD+ACD=180,ACD+DCP=180,DCP=ABD,ABDDCP;(3)BC是O的直径,BDC=BAC=90,在RtABC中,BC=13cm,AD平分BAC,BAD=CAD,BOD=COD,BD=CD,在RtBCD中,BD2+CD2=BC2,BD=CD=BC=,ABDDCP,CP=16.9cm【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁