辽宁省丹东市第二中学2023年高三第五次模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:88313215 上传时间:2023-04-25 格式:DOC 页数:18 大小:2.14MB
返回 下载 相关 举报
辽宁省丹东市第二中学2023年高三第五次模拟考试数学试卷含解析.doc_第1页
第1页 / 共18页
辽宁省丹东市第二中学2023年高三第五次模拟考试数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《辽宁省丹东市第二中学2023年高三第五次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省丹东市第二中学2023年高三第五次模拟考试数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,则抛物线方程为( )ABCD2已知条件,条件直线与直线平行,则是的( )A充要条件B必要不充分条件C充分不必要条件D既不充分也不必要条件3中,角的对边分别为,若,则的面积为(

2、)ABCD4已知为等比数列,则( )A9B9CD5若复数()在复平面内的对应点在直线上,则等于( )ABCD6已知双曲线:的左、右两个焦点分别为,若存在点满足,则该双曲线的离心率为( )A2BCD57已知偶函数在区间内单调递减,则,满足( )ABCD8设为自然对数的底数,函数,若,则( )ABCD9已知函数,其中为自然对数的底数,若存在实数,使成立,则实数的值为( )ABCD10已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是( )ABCD11设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D

3、即不充分不必要条件12我国南北朝时的数学著作张邱建算经有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )A多1斤B少1斤C多斤D少斤二、填空题:本题共4小题,每小题5分,共20分。13变量满足约束条件,则目标函数的最大值是_14已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,若线段的垂直平分线与轴交点的横坐标为,则的值为_.15已知函数,则不等式的解集为_.16已知函数,则过原点且与曲线相切的直线方程为_.三、解答

4、题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_,计算的面积;请,这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.18(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,切点分别为,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.19(12分)已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明.20(12分)已知椭圆

5、的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.21(12分)已知首项为2的数列满足.(1)证明:数列是等差数列(2)令,求数列的前项和.22(10分)如图,在四棱锥中,底面是边长为2的菱形,平面平面,点为棱的中点()在棱上是否存在一点,使得平面,并说明理由;()当二面角的余弦值为时,求直线与平面所成的角参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据抛物线方程求得点的坐标,根据轴、

6、列方程,解方程求得的值.【详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【点睛】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.2、C【解析】先根据直线与直线平行确定的值,进而即可确定结果.【详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.3、A【解析】先求出,由正弦定理求得,然后由面积

7、公式计算【详解】由题意,由得,故选:A【点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解4、C【解析】根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】,又,可解得或设等比数列的公比为,则当时, ;当时, ,.故选:C【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.5、C【解析】由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.【点睛】本题考查复数的几何表示和共

8、轭复数的定义,属于基础题.6、B【解析】利用双曲线的定义和条件中的比例关系可求.【详解】.选B.【点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.7、D【解析】首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.8、D【解析】利用与的关系,求得的值.【详解】依题意,所以故选:D【点睛】本小题主要考查函数值的计算,属于基础题.9、A【解析】令f(x)g(x)=x+exa1n(x+1

9、)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是减函数,(1,+)上是增函数,故当x=1时,y有最小值10=1,而exa+4eax4,(当且仅当exa=4eax,即x=a+ln1时,等号成立);故f(x)g(x)3(当且仅当等号同时成立时,等号成立);故x=a+ln1=1,即a=1ln1故选:A10、A【解析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,当时,则当时,单减,当时,单增;当时,当,,当时,单减,当时,单增;根据题意画出函数大致

10、图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题11、A【解析】试题分析:, bm又直线a在平面内,所以ab,但直线不一定相交,所以“”是“ab”的充分不必要条件,故选A.考点:充分条件、必要条件.12、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列 则 由等差数列的性质得 ,故选C二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】分析:画出可行域,平移直线,当直线经过时,可得有最大值.详解: 画出束条件表示的可行性,如图,由可

11、得,可得,目标函数变形为,平移直线,当直线经过时,可得有最大值,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.14、1【解析】设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论【详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,

12、则,所以,所以.故答案为:1【点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键15、【解析】,分类讨论即可.【详解】由已知,若,则或解得或,所以不等式的解集为.故答案为:【点睛】本题考查分段函数的应用,涉及到解一元二次不等式,考查学生的计算能力,是一道中档题.16、【解析】设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程【详解】设切点坐标为,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(

13、1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)1【解析】(1) 选,可得,结合,求得即可;若选,由可得由,求得即可;若选,可得,又,可得,即可;(2)化简,根据角的范围求最值即可【详解】(1)若选,又,的面积若选,由可得,又,的面积 若选,又,可得,的面积(2),当时,有最大值1【点睛】本题考查了正余弦定理,三角三角恒等变形,考查了计算能力,属于中档题18、(1)见解析(2)直线过定点.【解析】(1)设

14、出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由此判断出轴.(2)求得点的纵坐标,由此求得点坐标,求得直线的斜率,由此求得直线的方程,化简后可得直线过定点.【详解】(1)设切点,切线的斜率为,切线:,设,则有,化简得,同理可的.,是方程的两根,轴.(2),.,直线:,即,直线过定点.【点睛】本小题主要考查直线和抛物线的位置关系,考查直线过定点问题,考查化归与转化的数学思想方法,属于中档题.19、(1)见解析(2)见解析【解析】(1)求得函数的定义域和导函数,对分成三种情况进行分类讨论,判断出的极值点个数.(2)由

15、(1)知,结合韦达定理求得的关系式,由此化简的表达式为,通过构造函数法,结合导数证得,由此证得成立.【详解】(1)函数的定义域为得, (i)当时;,因为时,时,所以是函数的一个极小值点; (ii)若时,若,即时,在是减函数,无极值点.若,即时,有两根,不妨设当和时,当时,是函数的两个极值点, 综上所述时,仅有一个极值点;时,无极值点;时,有两个极值点(2)由(1)知,当且仅当时,有极小值点和极大值点,且是方程的两根,则 所以 设,则,又,即,所以所以是上的单调减函数,有两个极值点,则【点睛】本小题主要考查利用导数研究函数的极值点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转

16、化的数学思想方法,属于中档题.20、(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.【解析】(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1列出方程组求解,推出,即可得到椭圆的方程(2)存在实数使得以线段为直径的圆恰好经过坐标原点设点,将直线的方程代入,化简,利用韦达定理,结合向量的数量积为0,转化为:求解即可【详解】解:(1)设椭圆的焦半距为c,则由题设,得,解得,所以,故所求椭圆C的方程为(2)存在实数k使得以线段为直径的圆恰好经过坐标原点O.理由如下:设点,将直线的方程代入,并整理,得.(*)则,因为以线段为直径的圆恰好经过坐标原点O,所以,即.又,于是,解得, 经检

17、验知:此时(*)式的,符合题意.所以当时,以线段为直径的圆恰好经过坐标原点O【点睛】本题考查椭圆方程的求法,椭圆的简单性质,直线与椭圆位置关系的综合应用,考查计算能力以及转化思想的应用,属于中档题.21、(1)见解析;(2)【解析】(1)由原式可得,等式两端同时除以,可得到,即可证明结论;(2)由(1)可求得的表达式,进而可求得的表达式,然后求出的前项和即可.【详解】(1)证明:因为,所以,所以,从而,因为,所以,故数列是首项为1,公差为1的等差数列.(2)由(1)可知,则,因为,所以,则.【点睛】本题考查了等差数列的证明,考查了等差数列及等比数列的前项和公式的应用,考查了学生的计算求解能力,

18、属于中档题.22、(1)见解析(2)【解析】()取的中点,连结、,得到故且,进而得到,利用线面平行的判定定理,即可证得平面.()以为坐标原点建立如图空间直角坐标系,设,求得平面的法向量为,和平面的法向量,利用向量的夹角公式,求得,进而得到为直线与平面所成的角,即可求解.【详解】()在棱上存在点,使得平面,点为棱的中点理由如下:取的中点,连结、,由题意,且,且,故且.所以,四边形为平行四边形.所以,又平面,平面,所以,平面.()由题意知为正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以为坐标原点建立如图空间直角坐标系,设,则由题意知,设平面的法向量为,则由得,令,则,所以取,显然可取平面的法向量,由题意:,所以.由于平面,所以在平面内的射影为,所以为直线与平面所成的角,易知在中,从而,所以直线与平面所成的角为.【点睛】本题考查了立体几何中的面面垂直的判定和直线与平面所成角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成,着重考查了分析问题和解答问题的能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁