《辽宁省丹东四校协作体2023届高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省丹东四校协作体2023届高考全国统考预测密卷数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( )ABCD2已知是函数的极大值点,则的取值范围是ABCD3某三棱锥的三视图如图所示,则该三棱锥的体积为ABC2D4设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )ABCD5设是虚数单位,则( )ABC1D26为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位
3、长度C向左平移个单位长度D向右平移个单位长度7已知全集,集合,则( )ABCD8第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )ABCD9已知直线过圆的圆心,则的最小值为( )A1B2C3D410在的展开式中,含的项的系数是( )A74B121CD11已知是边长为的正三角形,若,则ABCD12已知平面向量满足,且,则所夹的锐角为( )ABCD0二、
4、填空题:本题共4小题,每小题5分,共20分。13的展开式中,的系数是_.14正四面体的一个顶点是圆柱上底面的圆心,另外三个顶点圆柱下底面的圆周上,记正四面体的体积为,圆柱的体积为,则的值是_.15学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是_16某次足球比赛中,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他
5、们之间相互获胜的概率如下表所示.获胜概率0.40.30.8获胜概率0.60.70.5获胜概率0.70.30.3获胜概率0.20.50.7则队获得冠军的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,直线的参数方程为 (为参数)在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值18(12分)已知函数,其中,(1)当时,求的值;(2)当的最小正周期为时,求在上的值域19(12分)已知函数,()若,求的取值范围;()若,对,都有不等式恒成立,求的取值范
6、围20(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所
7、花的成本最低?21(12分)试求曲线ysinx在矩阵MN变换下的函数解析式,其中M,N22(10分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设关于轴的对称点为,证明:直线过轴上的定点.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函
8、数,所以的最小值为1,故选:B.【点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.2、B【解析】方法一:令,则,当,时,单调递减,时,且,即在上单调递增,时,且,即在上单调递减,是函数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,故选B方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得,故选B3、A【解析】 由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别
9、为和,所以底面面积为 高为的三棱锥,所以三棱锥的体积为,故选A4、B【解析】由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,所以为等边三角形,两渐近线的斜率分别为和.故选:B【点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.5、C【解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:, ,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.6、D【解析】通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的
10、图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.7、B【解析】直接利用集合的基本运算求解即可【详解】解:全集,集合,则,故选:【点睛】本题考查集合的基本运算,属于基础题8、A【解析】根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.9、D【解
11、析】圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值【详解】圆的圆心为,由题意可得,即,则,当且仅当且即时取等号,故选:【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题10、D【解析】根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为:,所以含的项的系数是的系数是,故选:D【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,11、A【解析】由可得,因为是边长为的正三角形,所以,故选A12、B【解析】根据题意可得,利用向
12、量的数量积即可求解夹角.【详解】因为即而所以夹角为故选:B【点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先将原式展开成,发现中不含,故只研究后面一项即可得解.【详解】,依题意,只需求中的系数,是.故答案为:-40【点睛】本题考查二项式定理性质,关键是先展开再利用排列组合思想解决,属于基础题.14、【解析】设正四面体的棱长为,求出底面外接圆的半径与高,代入体积公式求解【详解】解:设正四面体的棱长为,则底面积为,底面外接圆的半径为,高为正四面体的体积,圆柱的体积则故答案为:【点睛】本题主要考查多面体与旋转体
13、体积的求法,考查计算能力,属于中档题15、C【解析】假设获得一等奖的作品,判断四位同学说对的人数.【详解】分别获奖的说对人数如下表:获奖作品ABCD甲对错错错乙错错对错丙对错对错丁对错错对说对人数3021故获得一等奖的作品是C.【点睛】本题考查逻辑推理,常用方法有:1、直接推理结果,2、假设结果检验条件.16、0.18【解析】根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案
14、为:0.18【点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:()由得直线l的普通方程为x+y3=0又由得 2=2sin,化为直角坐标方程为x2+(y)2=5;()把直线l的参数方程代入圆C的直角坐标方程,得(3t)2+(t)2=5,即t23t+4=0设t1,t2是
15、上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=318、(1)(2)【解析】(1)根据,得到函数,然后,直接求解的值;(2)首先,化简函数,然后,结合周期公式,得到,再结合,及正弦函数的性质解答即可【详解】(1)因为,所以(2)因为即因为,所以所以因为所以所以当时,当时,(最大值)当时,在是增函数,在是减函数的值域是【点睛】本题主要考查了简单角的三角函数值的求解方法,两角和与差的正弦、余弦公式,三角函数的图象与性质等知识,考查了运算求解能力,属于中档题19、();().【解析】()由题意不等式化
16、为,利用分类讨论法去掉绝对值求出不等式的解集即可;()由题意把问题转化为,分别求出和,列出不等式求解即可【详解】()由题意知,若,则不等式化为,解得;若,则不等式化为,解得,即不等式无解;若,则不等式化为,解得,综上所述,的取值范围是;()由题意知,要使得不等式恒成立,只需,当时,因为,所以当时,即,解得,结合,所以的取值范围是.【点睛】本题考查了绝对值不等式的求解问题,含有绝对值的不等式恒成立应用问题,以及绝对值三角不等式的应用,考查了分类讨论思想,是中档题含有绝对值的不等式恒成立应用问题,关键是等价转化为最值问题,再通过绝对值三角不等式求解最值,从而建立不等关系,求出参数范围.20、每天派
17、出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目
18、所述找出目标函数,同时注意整点的选取,属于中档题.21、y2sin2x【解析】计算MN,计算得到函数表达式.【详解】M,N,MN, 在矩阵MN变换下, 曲线ysinx在矩阵MN变换下的函数解析式为y2sin2x【点睛】本题考查了矩阵变换,意在考查学生的计算能力.22、(1)或;(2)见解析【解析】(1)由已知条件利用点斜式设出直线的方程,则可表示出点的坐标,再由的关系表示出点的坐标,而点在椭圆上,将其坐标代入椭圆方程中可求出直线的斜率;(2)设出两点的坐标,则点的坐标可以表示出,然后直线的方程与椭圆方程联立成方程,消元后得到关于的一元二次方程,再利用根与系数的关系,再结合直线的方程,化简可得结果.【详解】(1)由条件可知直线的斜率存在,则可设直线的方程为,则,由,有,所以,由在椭圆上,则,解得,此时在椭圆内部,所以满足直线与椭圆相交,故所求直线方程为或.(也可联立直线与椭圆方程,由验证)(2)设,则,直线的方程为.由得,由,解得,当时,故直线恒过定点.【点睛】此题考查的是直线与椭圆的位置关系中的过定点问题,计算过程较复杂,属于难题.