《郑州市2023届高三考前热身数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《郑州市2023届高三考前热身数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知平面向量,满足,且,则与的夹角为( )ABCD2已知关于的方程在区间上有两个根,且,则实数的取值范围是( )ABCD3已知集合,集合,则( ).ABCD4定义在上的函数与其导函数的图象如图所示,设为坐标原点,、四点的横坐标依次为、,则函数的单调递减区间是( )ABCD5设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )ABCD6已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则( )ABCD7设集合,若集合中有且仅有2个元素,则实数的取值范围为ABCD8已知函数,若方程恰有两个不同实根,则正数m的取值范围为( )ABCD9某公
3、园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共( )种ABCD10定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )ABCD以上情况均有可能11已知复数(为虚数单位)在复平面内对应的点的坐标是( )ABCD12已知复数为虚数单位) ,则z 的虚部为( )A2BC4D二、填空题:本题共4小题,每小题5分,共20分。13已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为_14设变量,满足约束条件,则目标函数的最小值是_.15
4、在数列中,则数列的通项公式_.16在的二项展开式中,所有项的二项式系数之和为256,则_,项的系数等于_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.18(12分)己知,.(1)求证:;(2)若,求证:.19(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值该项指标值落在内的产品视为合格品,否则为不合格品乙生产线样
5、本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,0.1500.1000.0500.0250.0100.0052.0722
6、.7063.8415.0246.6357.87920(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由21(12分)某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).(1)应抽查男生与女生各多少人?(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:时间(小时)0,1(1,2(2,3(3,4(4,
7、5(5,6频率0.050.200.300.250.150.05若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?男生女生总计每周平均体育锻炼时间不超过2小时每周平均体育锻炼时间超过2小时总计附:K2.P(K2k0)0.1000.0500.0100.0052.7063.8416.6357.87922(10分)已知函数.(1)求函数的单调区间;(2)若,证明.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1
8、、C【解析】根据, 两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且, 所以,所以,所以 ,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.2、C【解析】先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,作出的图象,又由易知故选:C.【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.3、A【解析】算出集合A、B及,再求补集即可.【详解】由,得,所以,又,所以,故或.故选:A.【点睛】
9、本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.4、B【解析】先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.【详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交点,合乎题意.对函数求导得,由得,由图象可知,满足不等式的的取值范围是,因此,函数的单调递减区间为.故选:B.【点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函
10、数的图象,考查推理能力,属于中等题.5、D【解析】根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,即,由函数的单调区间知,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.6、D【解析】根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选
11、:D.【点睛】本题综合考查了随机变量的期望方差的求法,结合了概率二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.7、B【解析】由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.8、D【解析】当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,根据图像得到答案.【详解】当时,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,故,.根据图像知:.故选:.【点睛】本题考查了函数
12、的零点问题,确定函数周期画出函数图像是解题的关键.9、B【解析】间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论.【详解】使用插空法,先排盆虞美人、盆郁金香有种,然后将盆锦紫苏放入到4个位置中有种,根据分步乘法计数原理有,扣除郁金香在两边,排盆虞美人、盆郁金香有种,再将盆锦紫苏放入到3个位置中有,根据分步计数原理有,所以共有种.故选:B.【点睛】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题.10、B【解析】由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较【详解】由可得,即函数的周期,因
13、为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,故选:【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键11、A【解析】直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.【详解】解:,在复平面内对应的点的坐标是.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题12、A【解析】对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.二、填空题
14、:本题共4小题,每小题5分,共20分。13、【解析】先根据椭圆得出焦距,结合椭圆的定义求出,结合双曲线的定义求出双曲线的实半轴,最后利用离心率的公式求出离心率即可.【详解】解: 因为椭圆,则焦点为,又因为椭圆与双曲线(,)有相同的焦点,椭圆与双曲线在第一象限内的交点为,且,在椭圆中: 由椭圆的定义: 在双曲线中: ,所以双曲线的实轴长为: ,实半轴为则双曲线的离心率为: .故答案为: 【点睛】本题主要考查椭圆与双曲线的定义,考查离心率的求解,利用定义解决综合问题.14、7【解析】作出不等式组表示的平面区域,得到如图的ABC及其内部,其中A(2,1),B(1,2),C(4,5)设z=F(x,y)
15、=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值z最小值=F(2,1)=715、【解析】由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【详解】解:,得:,又,数列的奇数项为首项为1,公差为2的等差数列,当为奇数时,当为偶数时,则为奇数,数列的通项公式,故答案为:.【点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式16、8 1 【解析】根据二项式系数和的性质可得n,再利用展开式的通项公式
16、求含项的系数即可.【详解】由于所有项的二项式系数之和为,故的二项展开式的通项公式为,令,求得,可得含x项的系数等于,故答案为:8;1【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线过定点【解析】设.(1)由题意知,.设直线的方程为,由得,则,由根与系数的关系可得,所以.由,得,解得.所以抛物线的方程为.(2)设直线的方程为,由得,由根与系数的关系可得, 所以,解得.所以直线的方程为,所以时,直线过定点.18、(1)证明见解析(2)证明见解析【解析】(1)采用分析法论证,
17、要证,分式化整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,当且仅当时等号成立.将上面四式相加,可得,即.【点睛】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题.19、(1)0.0081(2)见解析,保留乙生产线较好【解析】(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独
18、立性检验算出的观测值即可判断.【详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,事件恰好发生2次,其概率为:(2)列联表:甲生产线乙生产线合计合格品9096186不合格品10414合计100100200的观测值,有90%把握认为该企业生产的这种产品的质量指标值与生产线有关由(1)知甲生产线的合格率为0.9,乙生产线的合格率为,保留乙生产线较好【点睛】此题考查独立重复性检验二项分布概率,独立性
19、检验等知识点,认准特征代入公式即可,属于较易题目.20、(1)证明见解析 (2)存在,为中点【解析】(1)证明面,即证明平面平面;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系利用向量方法得,解得,所以为中点【详解】(1)由于为中点,又,故,所以为直角三角形且,即又因为面,面面,面面,故面,又面,所以面面(2)由(1)知面,又四边形为矩形,则两两垂直以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系则,设,则,设平面的法向量为,则有,令,则,则平面的一个法向量为,同理可得平面的一个法向量为,设平面与平面所成角为,则由题意可得,解得,所以点为中点【点
20、睛】本题主要考查空间几何位置关系的证明,考查空间二面角的应用,意在考查学生对这些知识的理解掌握水平.21、(1)男生人数为人,女生人数55人.(2)列联表答案见解析,有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.【解析】(1)求出男女比例,按比例分配即可;(2)根据题意结合频率分布表,先求出二联表中数值,再结合公式计算,利用表格数据对比判断即可【详解】(1)因为男生人数:女生人数900:11009:11,所以男生人数为,女生人数1004555人,(2)由频率频率直方图可知学生每周平均体育锻炼时间超过2小时的人数为:(10.3+10.25+10.15+10.05)10075人,每
21、周平均体育锻炼时间超过2小时的女生人数为37人,联表如下:男生女生总计每周平均体育锻炼时间不超过2小时71825每周平均体育锻炼时间超过2小时383775总计4555100因为3.8923.841,所以有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关.【点睛】本题考查分层抽样,独立性检验,熟记公式,正确计算是关键,属于中档题.22、(1)单调递减区间为,无单调递增区间(2)证明见解析【解析】(1)求导,根据导数的正负判断单调性,(2)整理,化简为,令,求的单调性,以及,即证.【详解】解:(1)函数定义域为,则,令,则,当,单调递减;当,单调递增;故,故函数的单调递减区间为,无单调递增区间.(2)证明,即为,因为,即证,令,则,令,则,当时,所以在上单调递减,则,则在上恒成立,所以在上单调递减,所以要证原不等式成立,只需证当时,令,可知对于恒成立,即,即,故,即证,故原不等式得证.【点睛】本题考查利用导数研究函数的单调性,利用导数证明不等式,函数的最值问题,属于中档题