《浙江省嘉兴市海宁市2023届中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省嘉兴市海宁市2023届中考数学最后冲刺模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”下列各组数据中,能作为一个智慧三角形三边长的一组是()A1,2,3B1,1,C1,1,D1,2,2据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A9
2、.29109B9.291010C92.91010D9.2910113如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若BOC=40,则D的度数为()A100B110C120D1304在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球则两次摸出的小球的标号的和等于6的概率为()ABCD5如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点已知菱形的一个角为60,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且AED=ACD,则AEC 度数为 ( ) A75B60C45D306已知点P(a
3、,m),Q(b,n)都在反比例函数y=的图象上,且a0b,则下列结论一定正确的是()Am+n0Bm+n0CmnDmn7下列几何体中,其三视图都是全等图形的是()A圆柱B圆锥C三棱锥D球8观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为A75B89C103D1399已知关于的方程,下列说法正确的是A当时,方程无解B当时,方程有一个实数解C当时,方程有两个相等的实数解D当时,方程总有两个不相等的实数解10下列事件是必然事件的是()A任意作一个平行四边形其对角线互相垂直B任意作一个矩形其对角线相等C任意作一个三角形其内角和为D任意作一个菱形其对角线相等且互相垂直平分二、填空题(共7
4、小题,每小题3分,满分21分)11已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1x2时,y1与y2的大小关系为_.12若,则_13如果抛物线y(k2)x2+k的开口向上,那么k的取值范围是_14一艘轮船在小岛A的北偏东60方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45的C处,则该船行驶的速度为_海里/时15如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC若B=56,C=45,则游客中心A到观景长廊BC的距离AD的长约为_米(sin560.8,tan561.5)16如图,
5、直线l1l2l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,FAC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为 17如图,在正方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是 三、解答题(共7小题,满分69分)18(10分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。19(5分)先化简,再求值:,其中20(8分)小明和小刚玩“石头、剪刀、布”的游
6、戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家用树形图或列表法求只进行两局游戏便能确定赢家的概率21(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.22(10分)在
7、正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,连接BP,DQ(1)依题意补全图 1;(2)连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: 23(12分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76求:坡顶A到地面PO的距
8、离;古塔BC的高度(结果精确到1米)24(14分)计算:12+(3.14)0|1|参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120,底角30的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,依此即可作出判定【详解】1+2=3,不能构成三角形,故选项错误;B、12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120,底角30的等腰三角形
9、,故选项错误;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,其中9030=3,符合“智慧三角形”的定义,故选项正确故选D2、B【解析】科学记数法的表示形式为a1n的形式,其中1|a|1,n为整数确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1【详解】解:929亿=92900000000=9.2911故选B【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键3、B【解析】根据同弧所对的圆周角是圆心角度数的一半即可解题.【详解】BOC=40,AOB=180,BOC+AOB=220,D=110(同弧所对的圆周角是圆心角度数的一半),故选B.【点
10、睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.4、C【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可解:共16种情况,和为6的情况数有3种,所以概率为故选C5、B【解析】将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出CME为等边三角形,进而即可得出AEC的值【详解】将圆补充完整,找出点E的位置,如图所示弧AD所对的圆周角为ACD、AEC,图中所标点E符合题意四边形CMEN为菱形,且CME=60,CME为等边三角形,AEC=60故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图
11、形找出点E的位置是解题的关键6、D【解析】根据反比例函数的性质,可得答案【详解】y=的k=-21,图象位于二四象限,a1,P(a,m)在第二象限,m1;b1,Q(b,n)在第四象限,n1n1m,即mn,故D正确;故选D【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k1时,图象位于二四象限是解题关键7、D【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在
12、任意方向上的视图.8、A【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B9、C【解析】当时,方程为一元一次方程有唯一解当时,方程为一元二次方程,的情况由根的判别式确定:,当时,方程有两个相等的实数解,当且时,方程有两个不相等的实数解综上所述,说法C正确故选C10、B【解析】必然事件就是一定发生的事件,根据定义对各个选项进行判断即可【详解】解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;B、矩形的对角线相等,所以任意作一个矩
13、形其对角线相等一定发生,是必然事件,故本选项正确;C、三角形的内角和为180,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,故选:B【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件熟练掌握相关图形的性质也是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、y1y1【解析】分析:直接利用一次函数的性质分析得出答案详解:直线经过第一、二、
14、四象限,y随x的增大而减小,x1x1,y1与y1的大小关系为:y1y1故答案为:点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键12、【解析】=.13、k2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k21【详解】因为抛物线y(k2)x2k的开口向上,所以k21,即k2,故答案为k2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型14、【解析】设该船行驶的速度为x海里/时,由已知可得BC3x,AQBC,BAQ60,CAQ45,AB80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,
15、得出BC40403x,解方程即可【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45的C处,由题意得:AB80海里,BC3x海里,在直角三角形ABQ中,BAQ60,B906030,AQAB40,BQAQ40,在直角三角形AQC中,CAQ45,CQAQ40,BC40403x,解得:x.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.15、60【解析】根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决【详解】B=56,C=45,ADB=ADC=90,BC=BD+CD=100米, BD=,CD=,
16、+=100, 解得,AD60考点:解直角三角形的应用16、【解析】试题解析:AH=2,HB=1,AB=AH+BH=3,l1l2l3,考点:平行线分线段成比例17、【解析】利用同角的余角相等,易得EAB=PAD,再结合已知条件利用SAS可证两三角形全等;过B作BFAE,交AE的延长线于F,利用中的BEP=90,利用勾股定理可求BE,结合AEP是等腰直角三角形,可证BEF是等腰直角三角形,再利用勾股定理可求EF、BF;利用中的全等,可得APD=AEB,结合三角形的外角的性质,易得BEP=90,即可证;连接BD,求出ABD的面积,然后减去BDP的面积即可;在RtABF中,利用勾股定理可求AB2,即是
17、正方形的面积【详解】EAB+BAP=90,PAD+BAP=90,EAB=PAD,又AE=AP,AB=AD,在APD和AEB中,APDAEB(SAS);故此选项成立;APDAEB,APD=AEB,AEB=AEP+BEP,APD=AEP+PAE,BEP=PAE=90,EBED;故此选项成立;过B作BFAE,交AE的延长线于F,AE=AP,EAP=90,AEP=APE=45,又中EBED,BFAF,FEB=FBE=45,又BE=,BF=EF=,故此选项不正确;如图,连接BD,在RtAEP中,AE=AP=1,EP=,又PB=,BE=,APDAEB,PD=BE=,SABP+SADP=SABD-SBDP=
18、S正方形ABCD-DPBE=(4+)-=+故此选项不正确EF=BF=,AE=1,在RtABF中,AB2=(AE+EF)2+BF2=4+,S正方形ABCD=AB2=4+,故此选项正确故答案为【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识三、解答题(共7小题,满分69分)18、-2【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得【详解】原式= = ,x1且x0,在-1x2中符合条件的x的值为x=2,则原式=- =-2.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.19、
19、;【解析】先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值【详解】解:原式=把代入得:原式=【点睛】本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分20、(1),(2)【解析】解:(1)画树状图得:总共有9种等可能情况,每人获胜的情形都是3种,两人获胜的概率都是(2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为任选其中一人的情形可画树状图得:总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,两局游戏能确定赢家的概率为:(1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜
20、的情况,利用概率公式即可求得答案(2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案21、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升, 即加满油时,油量为70升.(2)设,把点,坐标分别代入得,当时,即已行驶的路程为650千米.【点睛】本题主
21、要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.22、(1)详见解析;(1)详见解析;BP=AB【解析】(1)根据要求画出图形即可;(1)连接BD,如图1,只要证明ADQABP,DPB=90即可解决问题;结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN由ADQABP,ANQACP,推出DQ=PB,AQN=APC=45,由AQP=45,推出NQC=90,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图 1:(1)证明:连接 BD,如图 1,线段 AP 绕点 A 顺时针旋转 90得到线段
22、AQ,AQ=AP,QAP=90,四边形 ABCD 是正方形,AD=AB,DAB=90,1=1ADQABP,DQ=BP,Q=3,在 RtQAP 中,Q+QPA=90,BPD=3+QPA=90,在 RtBPD 中,DP1+BP1=BD1, 又DQ=BP,BD1=1AB1,DP1+DQ1=1AB1解:结论:BP=AB理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QNADQABP,ANQACP,DQ=PB,AQN=APC=45,AQP=45,NQC=90,CD=DN,DQ=CD=DN=AB,PB=AB【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键
23、是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴23、 (1)坡顶到地面的距离为米;移动信号发射塔的高度约为米【解析】延长BC交OP于H.在RtAPD中解直角三角形求出AD10.PD24.由题意BHPH.设BCx.则x+1024+DH.推出ACDHx14.在RtABC中.根据tan76,构建方程求出x即可.【详解】延长BC交OP于H斜坡AP的坡度为1:2.4,设AD5k,则PD12k,由勾股定理,得AP13k,13k26,解得k2,AD10,BCAC,ACPO,BHPO,四边形ADHC是矩形,CHAD10,ACDH,BPD45,PHBH,设BCx,则x+1024+DH,ACDHx14,在RtABC中,tan76,即4.1解得:x18.7,经检验x18.7是原方程的解答:古塔BC的高度约为18.7米【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形24、1.【解析】直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案【详解】解:原式=1+41(1)=1+41+1=1【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.