《浙江省宁波城区五校联考2022-2023学年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省宁波城区五校联考2022-2023学年中考数学猜题卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是()ABCD2(3分)学校要组织足球比赛赛制为单循环形式(每两队之间赛一
2、场)计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛根据题意,下面所列方程正确的是( )A B C D3的相反数是 ( )ABC3D-34分式有意义,则x的取值范围是()Ax2Bx0Cx2Dx75若kb0,则一次函数的图象一定经过( )A第一、二象限B第二、三象限C第三、四象限D第一、四象限6据统计,2018年全国春节运输人数约为3 000 000 000人,将3 000 000 000用科学记数法表示为()A0.31010 B3109 C30108 D3001077如图,将ABC绕点C旋转60得到ABC,已知AC=6,BC=4,则线段AB扫过的图形面积为()ABC6D以上答案都不
3、对8是两个连续整数,若,则分别是( ).A2,3B3,2C3,4D6,89如图,O的半径为1,ABC是O的内接三角形,连接OB、OC,若BAC与BOC互补,则弦BC的长为()AB2C3D1.510在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180,所得抛物线的解析式是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自
4、然数,则的坐标是_,的坐标是_12在中,:1:2:3,于点D,若,则_13计算的结果是_14亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_.”15如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D若,则B_16农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960
5、.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;在同样的地质环境下播种,A种子的出芽率可能会高于B种子其中合理的是_(只填序号)17写出一个一次函数,使它的图象经过第一、三、四象限:_三、解答题(共7小题,满分69分)18(10分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机
6、抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.19(5分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50x60100.0560x703
7、00.1570x8040n80x90m0.3590x100500.25请根据所给信息,解答下列问题:m ,n ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?20(8分)如图,ACBD,DE交AC于E,ABDE,AD求证:ACAE+BC21(10分)如图所示,PB是O的切线,B为切点,圆心O在PC上,P=30,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.22(10分)如图,在ABC中,C = 90,E是BC上一点,EDAB,垂足为D求证:ABCEBD23(12分)如图1
8、,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,F30.(1)求证:BECE(2)将EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)求证:BEMCEN;若AB2,求BMN面积的最大值;当旋转停止时,点B恰好在FG上(如图3),求sinEBG的值.24(14分)如图,RtABC中,C=90,AB=14,AC=7,D是BC上一点,BD=8,DEAB,垂足为E,求线段DE的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】俯视图是从上面看几何体得到
9、的图形,据此进行判断即可【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形2、B【解析】试题分析:设有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:,故选B考点:由实际问题抽象出一元二次方程3、B【解析】先求的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;相反数的定义是:如果两个数只有符号
10、不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1因此的相反数是故选B4、A【解析】直接利用分式有意义则分母不为零进而得出答案【详解】解:分式有意义,则x10,解得:x1故选:A【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.5、D【解析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解【详解】kb0时,b0,此时一次函数y=kx+b的图象经过第一、三、四象限;当k0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb0,b0,由此可得如:
11、y=x1(答案不唯一).三、解答题(共7小题,满分69分)18、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108.【解析】试题分析:(1)用“极高”的人数所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数调查的学生人数,即可得到所占的百分比,所占的百分比即可求出对应的扇形圆心角的度数.试题解析:(人).学生学习兴趣为“高”的人数为:(人).补全统计图如下:分组后学生学习兴趣为“中”的所占的百分比为:学生学习兴趣为“中”对应扇形的圆心角为:19、(1)70,0.2(2)70(3)750【解析】(1
12、)根据题意和统计表中的数据可以求得m、n的值;(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人【详解】解:(1)由题意可得,m2000.3570,n402000.2,故答案为70,0.2;(2)由(1)知,m70,补全的频数分布直方图,如下图所示;(3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:30000.25750(人),答:该校参加这次比赛的3000名学生中成绩“优”等约有750人【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找
13、出所求问题需要的条件,利用数形结合的思想解答20、见解析.【解析】由“SAS”可证ABCDEC,可得BCCE,即可得结论【详解】证明:ABDE,AD,ACBDCE90ABCDEC(SAS)BCCE,ACAE+CEACAE+BC【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键21、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到OBP=90,进而得到BOP=60,由OC=BO,得到OBC=OCB=30,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可试题解析:证明:(1)PB是O的切线,OBP=90,POB=90-30=60
14、OB=OC,OBC=OCBPOB=OBC+OCB,OCB=30=P,PB=BC;(2)连接OD交BC于点MD是弧BC的中点,OD垂直平分BC在直角OMC中,OCM=30,OC=2OM=OD,OM=DM,四边形BOCD是菱形22、证明见解析【解析】试题分析:先根据垂直的定义得出EDB90,故可得出EDBC再由BB,根据有两个角相等的两三角形相似即可得出结论试题解析:解:EDAB, EDB90C90, EDBC BB, 点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键23、(1)详见解析;(1)详见解析;1;.【解析】(1)只要证明BAECDE即可;(1)利
15、用(1)可知EBC是等腰直角三角形,根据ASA即可证明;构建二次函数,利用二次函数的性质即可解决问题;如图3中,作EHBG于H设NG=m,则BG=1m,BN=EN=m,EB=m利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,四边形ABCD是矩形,AB=DC,A=D=90,E是AD中点,AE=DE,BAECDE,BE=CE(1)解:如图1中,由(1)可知,EBC是等腰直角三角形,EBC=ECB=45,ABC=BCD=90,EBM=ECN=45,MEN=BEC=90,BEM=CEN,EB=EC,BEMCEN;BEMCEN,BM=CN,设BM=CN=x,则BN=4-
16、x,SBMN=x(4-x)=-(x-1)1+1,-0,x=1时,BMN的面积最大,最大值为1解:如图3中,作EHBG于H设NG=m,则BG=1m,BN=EN=m,EB=mEG=m+m=(1+)m,SBEG=EGBN=BGEH,EH=m,在RtEBH中,sinEBH=【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,24、1【解析】试题分析:根据相似三角形的判定与性质,可得答案试题解析:DEAB,BED=90,又C=90,BED=C又B=B,BEDBCA,DE=1考点:相似三角形的判定与性质