《浙江省台州玉环2023届十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省台州玉环2023届十校联考最后数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在平面直角坐标系中,正方形的顶点在轴上,且,则正方形的面积是( )ABCD2不等式组的解集为则的取值范围为( )ABCD3一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD4某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A甲种方案所用铁丝最长B乙种方案所用铁丝最长C丙种方案所用铁丝最长D三种方案所用铁丝一样长:5某校九年级(1)班学
3、生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为ABx(x+1)=1980C2x(x+1)=1980Dx(x-1)=19806下列各式中计算正确的是()Ax3x3=2x6B(xy2)3=xy6C(a3)2=a5Dt10t9=t7如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为( )A4B6C8D108如图,在ABC中,点D在AB边上,DEBC,与边AC交于点E,连结BE,记ADE,BCE的面积分别为S1,S2,
4、()A若2ADAB,则3S12S2B若2ADAB,则3S12S2C若2ADAB,则3S12S2D若2ADAB,则3S12S29下列几何体中,三视图有两个相同而另一个不同的是()A(1)(2)B(2)(3)C(2)(4)D(3)(4)10据统计, 2015年广州地铁日均客运量均为人次,将用科学记数法表示为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11将6本相同厚度的书叠起来,它们的高度是9厘米如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_本12如图,用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_cm13如图,将三角形AOC绕点O
5、顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_(结果保留)14用科学计数器计算:2sin15cos15= _(结果精确到0.01).15已知,如图,正方形ABCD的边长是8,M在DC上,且DM2,N是AC边上的一动点,则DN+MN的最小值是_16如图,直线 ab,直线 c 分别于 a,b 相交,1=50,2=130,则3 的度数为( )A50B80C100D13017如图,矩形ABCD的对角线BD经过的坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(2,3),则k的值为_三、解答题(共7小题,满分69分)18(10分)如图,
6、安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,求末端操作器节点到地面直线的距离.(结果保留根号)19(5分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达该单位上午8:00上班,中午11:30下班(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新
7、顾客”为c1、c2、c3、c4窗口开始工作记为0时刻a1a2a3a4a5a6c1c2c3c4到达窗口时刻000000161116服务开始时刻024681012141618每人服务时长2222222222服务结束时刻2468101214161820根据上述表格,则第 位,“新顾客”是第一个不需要排队的(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失分析:第n个“新顾客”到达窗口时刻为 ,第(n1)个“新顾客”服务结束的时刻为 20(8分)解不等式组:21(10分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A
8、DCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)22(10分)解不等式组 ,并把解集在数轴上表示出来.23(12分)先化简,再求值:,其中x=124(14分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球乒
9、乓球36排球足球12请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】作BEOA于点E.则AE=2-(-3)=5,AODBEA(AAS),OD=AE=5, ,正方形的面积是: ,故选D.2、B【解析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可【详解】解:解不等式组,得不等式组的解集为x2,k12,解得k1故选:B【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出
10、关于k的不等式,难度适中3、C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 4、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长故选D考点:生活中的平移现象5、D【解析】根据题意得
11、:每人要赠送(x1)张相片,有x个人,然后根据题意可列出方程【详解】根据题意得:每人要赠送(x1)张相片,有x个人,全班共送:(x1)x=1980,故选D【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x1)张相片,有x个人是解决问题的关键.6、D【解析】试题解析:A、 原式计算错误,故本选项错误;B、 原式计算错误,故本选项错误;C、 原式计算错误,故本选项错误;D、 原式计算正确,故本选项正确;故选D点睛:同底数幂相除,底数不变,指数相减.7、C【解析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,CEF的面积=CFCE【详解】解:由折
12、叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BCDE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以CEF的面积=CFCE=8;故选:C点睛:本题利用了:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;矩形的性质,平行线的性质,三角形的面积公式等知识点8、D【解析】根据题意判定ADEABC,由相似三角形的面积之比等于相似比的平方解答【详解】如图,在ABC中,DEBC,ADEABC,若1ADAB,即时,此时3S1S1+SBDE,而S1+SBDE1S1但是不能确定3
13、S1与1S1的大小,故选项A不符合题意,选项B不符合题意若1ADAB,即时,此时3S1S1+SBDE1S1,故选项C不符合题意,选项D符合题意故选D【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形9、B【解析】根据三视图的定义即可解答【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥
14、主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.10、D【解析】科学记数法就是将一个数字表示成(a10的n次幂的形式),其中1|a|10,n表示整数n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂【详解】解:6590000=6.591故选:D【点睛】本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法二、填空题(共7小题,每小题3分,满分21分)11、1【解析】因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论【详解】设这些书有x本,
15、由题意得,解得:x=1,答:这些书有1本故答案为:1【点睛】本题考查了比例的性质,正确的列出比例式是解题的关键12、【解析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理 即可出圆锥的高.【详解】圆心角为120,半径为6cm的扇形的弧长为4cm圆锥的底面半径为2,故圆锥的高为=4cm【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.13、5【解析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积扇形OCD的面积,利用扇形的面积公式计算即可求解【详解】AOCBOD,阴影部分的面积=扇形OAB的面积扇形OCD的面积5故答案为:5【点睛】本题考查了旋转的性质以及
16、扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积扇形OCD的面积是解题的关键14、0.50【解析】直接使用科学计算器计算即可,结果需保留二位有效数字.【详解】用科学计算器计算得0.5,故填0.50,【点睛】此题主要考查科学计算器的使用,注意结果保留二位有效数字.15、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解解答:解:如图,连接BM,点B和点D关于直线AC对称,NB=ND,则BM就是DN+MN的最小值,正方形ABCD的边长是8,DM=2,CM=6,BM=1,DN+MN的最小值是1故答案为1点评:考查正方形的
17、性质和轴对称及勾股定理等知识的综合应用16、B【解析】根据平行线的性质即可解决问题【详解】ab,1+3=2,1=50,2=130,3=80, 故选B【点睛】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题17、1或1【解析】根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k2+4k+1=6,再解出k的值即可【详解】如图:四边形ABCD、HBEO、OECF、GOFD为矩形,又BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,SBEO=SBHO,SO
18、FD=SOGD,SCBD=SADB,SCBDSBEOSOFD=SADBSBHOSOGD,S四边形CEOF=S四边形HAGO=23=6,xy=k2+4k+1=6,解得k=1或k=1故答案为1或1【点睛】本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,解题的关键是判断出S四边形CEOF=S四边形HAGO三、解答题(共7小题,满分69分)18、()cm.【解析】作BGCD,垂足为G,BHAF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【详解】如图,作BGCD,垂足为G,BHAF,垂足为H,在中,BCD=60,BC=60cm,在中,BAF=45,AB=60cm
19、,D到L的距离.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.19、(1)5;(2)5n4,na+6a【解析】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,则第n个“新顾客”到达窗口时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a【详解】(1)第5位,“新
20、顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,第n个“新顾客”到达窗口时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n个“新顾客”服务开始的时间为(6+n)a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,每a分钟办理一个客户,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,故答案为:5n4,na+6a【点睛】本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,
21、寻找规律,列出代数式20、9x1【解析】先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案【详解】解不等式1(x1)2x,得:x1,解不等式1,得:x9,则原不等式组的解集为9x1【点睛】此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分21、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作C
22、HAB于点H,如图所示,BC=12km,B=30,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km,DMA=90,B=45,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.22、不等式组的解集为,在数轴上表示见解析.【解析】先求出不等式组中每一
23、个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【详解】由2(x+2)3x+3,可得:x1,由,可得:x3,则不等式组的解为:1x3,不等式组的解集在数轴上表示如图所示:【点睛】本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示23、-2.【解析】根据分式的运算法化解即可求出答案【详解】解:原式=,当x=1时,原式=【点睛】熟练运用分式的运算法则24、 (1)24,1;(2) 54;(3)360.【解析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解【详解】(1)抽取的人数是3630%120(人),则a12020%24,b120302436121故答案是:24,1;(2)“排球”所在的扇形的圆心角为36054,故答案是:54;(3)全校总人数是12010%1200(人),则选择参加乒乓球运动的人数是120030%360(人)