《福建省漳州市龙文区龙文中学2023届中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省漳州市龙文区龙文中学2023届中考数学模拟精编试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知关于x的一元二次方程有实数根,则m的取值范围是( )ABCD2如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )AAB=ADBAC平分BCDCA
2、B=BDDBECDEC3二次函数y=ax2+bx+c(a0)的图象如图所示,下列说法:2a+b=0,当1x3时,y0;3a+c=0;若(x1,y1)(x2、y2)在函数图象上,当0x1x2时,y1y2,其中正确的是()ABCD4已知,则的值为ABCD5一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等设小明打字速度为x个/分钟,则列方程正确的是()ABCD6圆锥的底面半径为2,母线长为4,则它的侧面积为()A8B16C4D47如果,那么的值为( )A1B2CD8如图,A、B、C是O上的三点,BAC30,则BOC的大小是(
3、)A30B60C90D459如图,在平面直角坐标系xOy中,点C,B,E在y轴上,RtABC经过变化得到RtEDO,若点B的坐标为(0,1),OD2,则这种变化可以是( )AABC绕点C顺时针旋转90,再向下平移5个单位长度BABC绕点C逆时针旋转90,再向下平移5个单位长度CABC绕点O顺时针旋转90,再向左平移3个单位长度DABC绕点O逆时针旋转90,再向右平移1个单位长度10在1、1、3、2这四个数中,最大的数是()A1B1C3D211已知关于x的不等式axb的解为x-2,则下列关于x的不等式中,解为x2的是( )Aax+2-b+2Bax-1b-1CaxbD12“山西八分钟,惊艳全世界”
4、.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米数据56亿用科学记数法可表示为()A56108B5.6108C5.6109D0.561010二、填空题:(本大题共6个小题,每小题4分,共24分)13一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为_14抛物线y=x2+2x+m1与x轴有交点,则m的取值范围是_15如图,在等腰ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_cm16如图,将AOB绕点O按逆时针方向旋转4
5、5后得到COD,若AOB=15,则AOD=_度17如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为_个.18口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距 千米,慢车速度为 千米/小时(2)求快车速度是多少?(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式(4)直接
6、写出两车相距300千米时的x值20(6分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角=45,同时测得大楼底端A点的俯角为=30已知建筑物M的高CD=20米,求楼高AB为多少米?(1.732,结果精确到0.1米)21(6分)现有A、B两种手机上网计费方式,收费标准如下表所示:计费方式月使用费/元包月上网时间/分超时费/(元/分)A301200.20B603200.25设上网时间为x分钟,(1)若按方式A和方式B的收费金额相等,求x的值;(2)若上网时间x超过320分钟,选择哪一种方式更省钱?22(8分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P
7、是抛物线上任意一点,PHl于点H,则PF=PH.基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.(1)在点,中,抛物线的关联点是_ ;(2)如图2,在矩形ABCD中,点,点,若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是_.23(8分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了
8、表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上 年龄组x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)该市男学生的平均身高从 岁开始增加特别迅速(2)求直线AB所对应的函数表达式(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?24(10分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法
9、,求抽出的两张牌牌面上的数字之和都是偶数的概率25(10分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,商品名称甲乙进价(元/件)80100售价(元/件)160240设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元(1)求y与x的函数关系式;(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50a70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得
10、最大利润的进货方案26(12分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30方向8km处,位于景点B的正北方向,还位于景点C的北偏西75方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长(结果精确到0.1km)求景点C与景点D之间的距离(结果精确到1km)27(12分)如图,抛物线与x轴交于点A,B,与轴交于点C,过点C作CDx轴,交抛物线的对称轴于点D,连结BD,已知点A坐标为(-1,0)求该抛物线的解析式;求梯形COBD的面积参考答案一、选择
11、题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:关于x的一元二次方程有实数根,=,解得m1,故选C【点睛】本题考查一元二次方程根的判别式2、C【解析】解:AC垂直平分BD,AB=AD,BC=CD,AC平分BCD,平分BCD,BE=DEBCE=DCE在RtBCE和RtDCE中,BE=DE,BC=DC,RtBCERtDCE(HL)选项ABD都一定成立故选C3、B【解析】函数图象的对称轴为:x=-=1,b=2a,即2a+b=0,正确;由图象可知,当1x3时,y0,错误;由图象可知,当x=1时,y=0,ab+c=0,b=2a,3a+c=
12、0,正确;抛物线的对称轴为x=1,开口方向向上,若(x1,y1)、(x2,y2)在函数图象上,当1x1x2时,y1y2;当x1x21时,y1y2;故错误;故选B点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理4、C【解析】由题意得,4x0,x40,解得x=4,则y=3,则=,故选:C. 5、C【解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C【点睛】本题考
13、查列分式方程解应用题,找准题目中的等量关系,难度不大6、A【解析】解:底面半径为2,底面周长=4,侧面积=44=8,故选A7、D【解析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案【详解】 故选:D【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键8、B【解析】【分析】欲求BOC,又已知一圆周角BAC,可利用圆周角与圆心角的关系求解【详解】BAC=30,BOC=2BAC =60(同弧所对的圆周角是圆心角的一半),故选B【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半9、C【解析】RtABC通过变换得到Rt
14、ODE,应先旋转然后平移即可【详解】RtABC经过变化得到RtEDO,点B的坐标为(0,1),OD2,DOBC2,CO3,将ABC绕点C顺时针旋转90,再向下平移3个单位长度,即可得到DOE;或将ABC绕点O顺时针旋转90,再向左平移3个单位长度,即可得到DOE;故选:C【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化10、C【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:根据有理数比较大小的方法,可得-2-111,在1、-1、1、-2这四个数中,最大的数
15、是1故选C【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小11、B【解析】关于x的不等式axb的解为x-2,a0,且,即,(1)解不等式ax+2-b+2可得:ax2;(2)解不等式ax-1b-1可得:-axb,即xb可得:,即x-2;(4)解不等式可得:,即;解集为x2的是B选项中的不等式.故选B.12、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于56亿有10位,所以可以确定n1011【详解】56亿561085.6101,故选C【点睛
16、】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题解析:设俯视图的正方形的边长为其俯视图为正方形,从主视图可以看出,正方形的对角线长为 解得 这个长方体的体积为43=114、m1【解析】由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式0,即可得出关于m的一元一次不等式,解之即可得出结论【详解】关于x的一元二次方程x1+1x+m1=0有解,=114(m1)=84m0,解得:m1.故答案为:m1.【点睛】本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.1
17、5、 【解析】根据三角形的面积公式求出,根据等腰三角形的性质得到BDDCBC,根据勾股定理列式计算即可【详解】AD是BC边上的高,CE是AB边上的高,ABCEBCAD,AD6,CE8,ABAC,ADBC,BDDCBC,AB2BD2AD2,AB2BC236,即BC2BC236,解得:BC故答案为:【点睛】本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关16、30【解析】根据旋转的性质得到BOD=45,再用BOD减去AOB即可.【详解】将AOB绕点O按逆时针方向旋转45后,得到COD,BOD=45,又AOB=15,AOD=BODAOB
18、=4515=30.故答案为30.17、8【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,搭成这个几何体的小正方体的个数最少是5+2+1=8(个)故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数18、【解析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】从中随意摸出两个球的所有可能的结果
19、个数是12,随意摸出两个球是红球的结果个数是6,从中随意摸出两个球的概率=;故答案为:.【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)10, 1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x10;(4)当x=2小时或x=4小时时,两车相距300千米【解析】(1)由当
20、x=0时y=10可得出甲乙两地间距,再利用速度=两地间距慢车行驶的时间,即可求出慢车的速度;(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;(4)利用待定系数法求出当0x4时y与x之间的函数关系式,将y=300分别代入0x4时及4x时的函数关系式中求出x值,此题得解【详解】解:(1)当x=0时,y=10,甲乙两地相距10千米1010=1(千米/小时)故答案为10;1(2)设快车的速度为a千米/小时,根据
21、题意得:4(1+a)=10,解得:a=2答:快车速度是2千米/小时(3)快车到达甲地的时间为102=(小时),当x=时,两车之间的距离为1=400(千米)设当4x时,y与x之间的函数关系式为y=kx+b(k0),该函数图象经过点(4,0)和(,400),解得:,从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x10(4)设当0x4时,y与x之间的函数关系式为y=mx+n(m0),该函数图象经过点(0,10)和(4,0),解得:,y与x之间的函数关系式为y=150x+10当y=300时,有150x+10=300或150x10=300,解得:x=2或x=4当x=2小时或x=4小时时,两
22、车相距300千米【点睛】本题考查了待定系数法求一次函数解析式、一元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和相遇时间,列出关于a的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y=300时x的值20、楼高AB为54.6米【解析】过点C作CEAB于E,解直角三角形求出CE和CE的长,进而求出AB的长【详解】解:如图,过点C作CEAB于E,则AE=CD=20,CE=20,BE=CEtan=20tan45=201=20,AB=AE+EB
23、=20+20202.73254.6(米),答:楼高AB为54.6米【点睛】此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键21、(1)x=270或x=520;(2)当320x520时,选择方式B更省钱;当x=520时,两种方式花钱一样多;当x520时选择方式A更省钱.【解析】(1)根据收取费用=月使用费+超时单价超过时间,可找出yA、yB关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.(2)列不等式,求解即可得出结论【详解】(1)当时,与x之间的函数关系式为: 当时,与x之间的函数关系式为: 即当时,与x之间的函数关系
24、式为: 当时, 与x之间的函数关系式为: 即方式A和方式B的收费金额相等,当时,当时, 解得: 当时, 解得: 即x=270或x=520时,方式A和方式B的收费金额相等. (2) 若上网时间x超过320分钟,解得320x520,当320x520时,选择方式B更省钱;解得x=520,当x=520时,两种方式花钱一样多;解得x520,当x520时选择方式A更省钱.【点睛】考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.22、 (1) (2) 【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2)当时,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,
25、从而可得; 由知,分两种情况画出图形进行讨论即可得. 【详解】(1),x=2时,y=1,此时P(2,1),则d=1+2=3,符合定义,是关联点;,x=1时,y=,此时P(1,),则d=+=3,符合定义,是关联点;,x=4时,y=4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;,x=0时,y=0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,故答案为;(2)当时,此时矩形上的所有点都在抛物线的下方,; 由,如图2所示时,CF最长,当CF=4时,即=4,解得:t=,如图3所示时,DF最长,当DF=4时,即DF=4,解得 t=, 故答案为 【点睛】本题考查了新定义题,二次
26、函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.23、(1)11;(2)y3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右【解析】(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从 11 岁开始增加特别迅速,故答案为:11;(2)设直线AB所对应的函数表达式图象经过点则,解得即直线AB所对应的函数表达式:(3)设直线CD所对应的函数表达式为:,得,即直线CD所对应的函数表达式为:把代入得即该市18岁男生年龄
27、组的平均身高大约是174cm左右【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.24、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.25、(1)y=60x+28000;(2)若售完这些商品,则商场可获得的最大利润是22000元;(3)商场应购进甲商品120件
28、,乙商品80件,获利最大【解析】分析:(1)根据总利润=(甲的售价-甲的进价)购进甲的数量+(乙的售价-乙的进价)购进乙的数量代入列关系式,并化简即可;(2)根据总成本18000列不等式即可求出x的取值,再根据函数的增减性确定其最值问题;(3)把50a70分三种情况讨论:一次项x的系数大于0、等于0、小于0,根据函数的增减性得出结论详解:(1)根据题意得:y=(16080)x+(240100)(200x),=60x+28000,则y与x的函数关系式为:y=60x+28000;(2)80x+100(200x)18000,解得:x100,至少要购进100件甲商品,y=60x+28000,600,
29、y随x的增大而减小,当x=100时,y有最大值,y大=60100+28000=22000,若售完这些商品,则商场可获得的最大利润是22000元;(3)y=(16080+a)x+(240100)(200x) (100x120),y=(a60)x+28000,当50a60时,a600,y随x的增大而减小,当x=100时,y有最大利润,即商场应购进甲商品100件,乙商品100件,获利最大,当a=60时,a60=0,y=28000,即商场应购进甲商品的数量满足100x120的整数件时,获利最大,当60a70时,a600,y随x的增大而增大,当x=120时,y有最大利润,即商场应购进甲商品120件,乙商
30、品80件,获利最大点睛:本题是一次函数和一元一次不等式的综合应用,属于销售利润问题,在此类题中,要明确售价、进价、利润的关系式:单件利润=售价-进价,总利润=单个利润数量;认真读题,弄清题中的每一个条件;对于最值问题,可利用一次函数的增减性来解决:形如y=kx+b中,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小26、(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km【解析】解:(1)如图,过点D作DEAC于点E,过点A作AFDB,交DB的延长线于点F,在RtDAF中,ADF=30,AF=AD=8=4,DF=,在RtABF中BF=3,BD
31、=DFBF=43,sinABF=,在RtDBE中,sinDBE=,ABF=DBE,sinDBE=,DE=BDsinDBE=(43)=3.1(km),景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知CDB=75,由(1)可知sinDBE=0.8,所以DBE=53,DCB=1807553=52,在RtDCE中,sinDCE=,DC=4(km),景点C与景点D之间的距离约为4km27、(1)(2)【解析】(1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,根据梯形面积公式即可求出梯形COBD的面积【详解】(1)将A(1,0)代入中,得:0=4a+4,解得:a=1该抛物线解析式为(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,抛物线的对称轴为直线x=1,CD=1A(1,0),B(2,0),即OB=2