《黔东南市重点中学2023届初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《黔东南市重点中学2023届初中数学毕业考试模拟冲刺卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1计算的值( )A1BC3D2民族图案是数学文化中的一块瑰宝下列图案中,既不是中心对称图形也不是轴对称图形的是( )ABC
2、D3有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC4下列算式中,结果等于a5的是()Aa2+a3Ba2a3Ca5aD(a2)35计算5x23x2的结果是( )A2x2B3x2C8x2D8x26主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人将1350000000用科学记数法表示为()A135107B1.35109
3、C13.5108D1.3510147某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为()A1.6104人B1.6105人C0.16105人D16103人8下列命题是真命题的是( )A过一点有且只有一条直线与已知直线平行B对角线相等且互相垂直的四边形是正方形C平分弦的直径垂直于弦,并且平分弦所对的弧D若三角形的三边a,b,c满足a2b2c2acbcab,则该三角形是正三角形9不论x、y为何值,用配方法可说明代数式x2+4y2+6x4y+11的值()A总不小于1 B总不小于11C可为任何实数 D可能为负数10有6
4、个相同的立方体搭成的几何体如图所示,则它的主视图是( )ABCD11广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A3.65103B3.65104C3.65105D3.6510612在3,1,0,1四个数中,比2小的数是()A3B1C0D1二、填空题:(本大题共6个小题,每小题4分,共24分)13甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙
5、车到达A地的时候,甲车与A地的距离为_千米14如果,那么=_15比较大小:4 (填入“”或“”号)16分解因式2x24x2_17关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_18同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、表示;田赛项目:跳远,跳高分别用、表示该同学从5个项目中任选一个,恰好是田赛项目的概率为_;该同学从5个项目中任选两个,利用树状图或表
6、格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率20(6分)(1)|2|+tan30+(2018)0-()-1(2)先化简,再求值:(1),其中x的值从不等式组的整数解中选取21(6分)某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共需210元()求这两种品牌计算器的单价;()开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关
7、系式()某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由22(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310日销售量(n件)198196194?该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1x5050x90销售价格(元/件)x+60100 (1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天
8、销售利润=日销售量(每件销售价格每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.23(8分)如图,抛物线y=x2x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C(1)求点A,点B的坐标;(2)P为第二象限抛物线上的一个动点,求ACP面积的最大值24(10分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45、35已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度(结果保留整数)(参考数据:sin35=0.57,cos35=0.82,tan35=0.70)25(10分)服装店准备购进甲乙两
9、种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0a20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?26(12分)鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?在实际销售时,
10、由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.27(12分)我们来定义一种新运算:对于任意实数 x、y,“”为 ab(a+1)(b+1)1.(1)计算(3)9(2)嘉琪研究运算“”之后认为它满足交换律,你认为她的判断 ( 正确、错误)(3)请你帮助嘉琪完成她对运算“”是否满足结合律的证明 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据有理数的加法法则进行计算即可【详解】故选:A
11、【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键2、C【解析】分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误故选C3、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减
12、小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.4、B【解析】试题解析:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误故选B5、C【解析】利用合并同类项法则直接合并得出即可【详解】解: 故选C.【点睛】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键6、B【解析】科
13、学记数法的表示形式为a的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】将1350000000用科学记数法表示为:1350000000=1.35109,故选B【点睛】本题考查科学记数法的表示方法. 科学记数法的表示形式为a的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值及n的值.7、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数
14、绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】用科学记数法表示16000,应记作1.6104,故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、D【解析】根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、a2b2c2acbcab,2a22b22c2-2ac
15、-2bc-2ab=0,(a-b)2+(a-c)2+(b-c)2=0,a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.9、A【解析】利用配方法,根据非负数的性质即可解决问题;【详解】解:x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,又(x+3)20,(2y-1)20,x2+4y2+6x-4y+111,故选:A【点睛】本题考查配方法的应用,非负数的性质等知识,
16、解题的关键是熟练掌握配方法.10、C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形故选C考点:简单组合体的三视图11、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将365000这个数用科学记数法表示为3.651故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正
17、确确定a的值以及n的值12、A【解析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.二、填空题:(本大题共6个小题,每小题4分,共24分)13、630【解析】分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可
18、求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.详解:设甲车,乙车的速度分别为x千米/时,y千米/时,甲车与乙车相向而行5小时相遇,则5(xy)900,解得xy180,相遇后当甲车到达B地时两车相距720千米,所需时间为7201804小时,则甲车从A地到B需要9小时,故甲车的速度为9009100千米/时,乙车的速度为18010080千米/时,乙车行驶900720180千米所需时间为180802.25小时,甲车从B地到A地的速度为900(16.554)120千米/时.所以甲车从B地向A地行驶了1202.25270千米,当乙车到达A地时,甲车离A地的距离为90
19、0270630千米.点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.14、【解析】试题解析: 设a=2t,b=3t, 故答案为:15、【解析】试题解析:4考点:实数的大小比较【详解】请在此输入详解!16、2(x+1)2。【解析】试题解析:原式=2(x2+2x+1)=2(x+1)2.考点:提公因式法与公式法的综合运用.17、k【解析】由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围【详解】关于x的一元二次方程x2+(2k+1)x
20、+k2+1=0有两个不相等的实根,0,即(2k+1)2-4(k2+1)0,解得k,故答案为k【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键18、【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=故答案为考点:列表法与树状图法三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1);(2).【解析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛
21、项目和一个径赛项目的情况,再利用概率公式即可求得答案【详解】(1)5个项目中田赛项目有2个,该同学从5个项目中任选一个,恰好是田赛项目的概率为:故答案为;(2)画树状图得:共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,恰好是一个田赛项目和一个径赛项目的概率为:【点睛】本题考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比20、(1)-1(1)-1【解析】(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数
22、幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;(1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.【详解】(1)原式=1+3+15=1+15=1;(1)原式=,解不等式组得:-1x则不等式组的整数解为1、0、1、1,x(x+1)0且x10,x0且x1,x=1,则原式=1【点睛】本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.21、(1)A种品牌计算器50元/个,B种品牌计算器60元/个;(2)y1=45x, y2= ;
23、(3)详见解析.【解析】(1)根据题意列出二元一次方程组并求解即可;(2)按照“购买所需费用=折扣单价数量”列式即可,注意B品牌计算器的采购要分0x10和x10两种情况考虑;(3)根据上问所求关系式,分别计算当x15时,由y1=y2、y1y2、y1y2确定其分别对应的销量范围,从而确定方案.【详解】()设A、B两种品牌的计算器的单价分别为a元、b元,根据题意得,解得:,答:A种品牌计算器50元/个,B种品牌计算器60元/个;()A品牌:y1=50x0.9=45x;B品牌:当0x10时,y2=60x,当x10时,y2=1060+60(x10)0.7=42x+180,综上所述:y1=45x,y2=
24、;()当y1=y2时,45x=42x+180,解得x=60,即购买60个计算器时,两种品牌都一样;当y1y2时,45x42x+180,解得x60,即购买超过60个计算器时,B品牌更合算;当y1y2时,45x42x+180,解得x60,即购买不足60个计算器时,A品牌更合算,当购买数量为15时,显然购买A品牌更划算.【点睛】本题考查了二元一次方程组的应用.22、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1x50时,y=2x2+160x+4000;当50x90时,y=120x
25、+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元试题解析:解:(1)n与x成一次函数,设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-210+200=1(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1x50时,y=-2x2+160x+4000=-2(x-40)2+7200,-20,当x=40时,y有最大值,最大值是7200;当50x90时,y=-120x+12000,-1200,y随x增大而减小,即当x=
26、50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元23、 (1) A(4,0),B(2,0);(2)ACP最大面积是4.【解析】(1)令y=0,得到关于x 的一元二次方程x2x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PDAO交AC于D,设P(t,t2t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以SACP=PDOA=PD4=2PD,可得SACP关于t 的函数关系式,继而可求出ACP面积的
27、最大值【详解】(1)解:设y=0,则0=x2x+4x1=4,x2=2A(4,0),B(2,0)(2)作PDAO交AC于D设AC解析式y=kx+b解得:AC解析式为y=x+4.设P(t,t2t+4)则D(t,t+4)PD=(t2t+4)(t+4)=t22t=(t+2)2+2SACP=PD4=(t+2)2+4当t=2时,ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.24、热气球离地面的高度约为1米【解析】作ADBC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可【详解】解:作ADBC交CB的延长线于D,设AD为x,由题意得,ABD
28、=45,ACD=35,在RtADB中,ABD=45,DB=x,在RtADC中,ACD=35,tanACD= , = ,解得,x1答:热气球离地面的高度约为1米【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形25、(1)甲种服装最多购进75件,(2)见解析.【解析】(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案【详解】(1)设购进甲种服装x件,由
29、题意可知:80x+60(100-x)7500,解得x75答:甲种服装最多购进75件,(2)设总利润为W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1当0a10时,10-a0,W随x增大而增大,当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;当a=10时,所以按哪种方案进货都可以;当10a20时,10-a0,W随x增大而减小当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件【点睛】本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键26、(1)若使水果礼盒的月销量不低于盒,每盒售价应不
30、高于元;(2)的值为.【解析】(1)设每盒售价应为x元,根据月销量=980-30超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每盒利润销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论【详解】解:设每盒售价元.依题意得:解得:答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元依题意: 令:化简:解得:(舍),答:的值为.【点睛】考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.27、(1)-21;(2)正确;(3)运算“”满足结合律【解析】(1)根据新定义
31、运算法则即可求出答案(2)只需根据整式的运算证明法则ab=ba即可判断(3)只需根据整式的运算法则证明(ab)c=a(bc)即可判断【详解】(1)(-3)9=(-3+1)(9+1)-1=-21(2)ab=(a+1)(b+1)-1ba=(b+1)(a+1)-1,ab=ba,故满足交换律,故她判断正确;(3)由已知把原式化简得ab=(a+1)(b+1)-1=ab+a+b(ab)c=(ab+a+b)c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+ca(bc)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c(ab)c=a(bc)运算“”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型