《陕西省西安市莲湖区七十中2023届高考适应性考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安市莲湖区七十中2023届高考适应性考试数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( )ABCD2已知不同直线、与不同平面、,且,则下列说法中正确的是( )A若,则B若,则C若,则D若,则3已知复数满足,其中为虚
2、数单位,则( )ABCD4如图,在矩形中的曲线分别是,的一部分,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()ABCD大小关系不能确定5已知,函数在区间内没有最值,给出下列四个结论:在上单调递增;在上没有零点;在上只有一个零点.其中所有正确结论的编号是( )ABCD6若复数满足,复数的共轭复数是,则( )A1B0CD7已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为( )A3B2CD8若x,y满足约束条件且的最大值为,则a的取值范围是( )ABCD9已知P是双曲线渐近线上一点,是双曲线的左、右焦点,记,PO,的斜率为,
3、k,若,-2k,成等差数列,则此双曲线的离心率为( )ABCD10已知当,时,则以下判断正确的是 ABCD与的大小关系不确定11定义,已知函数,则函数的最小值为( )ABCD12设,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知等比数列满足,则该数列的前5项的和为_.14已知向量,若向量与向量平行,则实数_15某种产品的质量指标值服从正态分布,且某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_16已知全集,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在多面体中,四边形是正方形,平面,为的中点.(1)求证:;
4、(2)求平面与平面所成角的正弦值.18(12分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.19(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线:,直线的参数方程为(为参数).直线与曲线交于,两点(I)写出曲线的直角坐标方程和直线的普通方程(不要求具体过程);(II)设,若,成等比数列,求的值20(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、(),求证:.21(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度在每一轮游戏中,主持
5、人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列定义随机变量X(xAyA)2+(xByB)2+(xCyC)2+(xDyD)2,用X来衡量家长对小孩饮食习惯的了解程度(1)若参与游戏的家长对小孩的饮食习惯完全不了解()求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;()求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X4,请
6、判断这位家长对小孩饮食习惯是否了解,说明理由22(10分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,令,解得,故当时,当,且,故方程在上有两个不同的实数根,故,解得.故选:C.【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,
7、利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.2、C【解析】根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟
8、练掌握空间中的平行关系与垂直关系的相关命题.3、A【解析】先化简求出,即可求得答案.【详解】因为,所以所以故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.4、B【解析】先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得【详解】根据题意,阴影部分的面积的一半为:,于是此点取自阴影部分的概率为又,故故选B【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题5、A【解析】先根据函数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解.【详解】因为函数在区间内没有最值.所以,或解得或.又,所以.令.可得.且在上单调递减.当时,且,所以在
9、上只有一个零点.所以正确结论的编号 故选:A.【点睛】本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平.6、C【解析】根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可【详解】解:,则,故选:C【点睛】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题7、C【解析】设射线OA与x轴正向所成的角为,由三角函数的定义得,利用辅助角公式计算即可.【详解】设射线OA与x轴正向所成的角为,由已知,所以,当时,取得等号.故选:C.【点睛】本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.8、A【解析】画出
10、约束条件的可行域,利用目标函数的最值,判断a的范围即可【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键9、B【解析】求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,再由等差数列中项性质和离心率公式,计算可得所求值【详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,则,由,成等差数列,可得,化为,即,可得,故选:【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运
11、算能力,意在考查学生对这些知识的理解掌握水平10、C【解析】由函数的增减性及导数的应用得:设,求得可得为增函数,又,时,根据条件得,即可得结果【详解】解:设,则,即为增函数,又,即,所以,所以故选:C【点睛】本题考查了函数的增减性及导数的应用,属中档题11、A【解析】根据分段函数的定义得,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,则,(当且仅当,即时“”成立.此时,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.12、D【解析】集合是一次不等式的解集,分别求出再求交集即可【详解
12、】,则故选【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、31【解析】设,可化为,得,14、【解析】由题可得,因为向量与向量平行,所以,解得15、【解析】直接计算,可得结果.【详解】由题可知:则质量指标值位于区间之外的产品件数:故答案为:【点睛】本题考查正太分布中原则,审清题意,简单计算,属基础题.16、【解析】利用集合的补集运算即可求解.【详解】由全集,所以.故答案为:【点睛】本题考查了集合的补集运算,需理解补集的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2
13、)【解析】(1)首先证明,平面.即可得到平面,.(2)以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系,分别求出平面和平面的法向量,带入公式求解即可.【详解】(1)平面,平面,.又四边形是正方形,.,平面.平面,.又,为的中点,.,平面.平面,.(2)平面,平面.以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系.如图所示:则,.,.设为平面的法向量,则,得,令,则.由题意知为平面的一个法向量,平面与平面所成角的正弦值为.【点睛】本题第一问考查线线垂直,先证线面垂直时解题关键,第二问考查二面角,建立空间直角坐标系是解题关键,属于中档题.18、(1);(2)【解析】分析:(1)
14、将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,即故不等式的解集为(2)当时成立等价于当时成立若,则当时;若,的解集为,所以,故综上,的取值范围为点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论
15、,求得结果.19、(I),;(II).【解析】(I)利用所给的极坐标方程和参数方程,直接整理化简得到直角坐标方程和普通方程;(II)联立直线的参数方程和C的直角坐标方程,结合韦达定理以及等比数列的性质即可求得答案.【详解】(I)曲线:,两边同时乘以可得,化简得);直线的参数方程为(为参数),可得x-y=-1,得x-y+1=0;(II)将(为参数)代入并整理得韦达定理: 由题意得 即 可得 即 解得【点睛】本题考查了极坐标方程、参数方程与直角坐标和普通方程的互化,以及参数方程的综合知识,结合等比数列,熟练运用知识,属于较易题.20、(1)当时, 在单调递增,当时,单调递增区间为,单调递减区间为(
16、2)证明见解析【解析】(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.【详解】(1),当时,恒成立,则在单调递增当时,令得,解得,又,当时,单调递增;当时,单调递减;当时,单调递增.(2)依题意得,则由(1)得,在单调递增,在上单调递减,在上单调递增若方程有三个实数解,则法一:双偏移法设,则在上单调递增,即,其中,在上单调递减,即设,在上单调递增,即,其中,在上单调递增,即.法二:直接证明法,在上单调递增,要证,即证设,则在上单调递减,在上单调递增,即(注意:若没有证明,
17、扣3分)关于的证明:(1)且时,(需要证明),其中(2),即,则【点睛】本题考查函数与倒导数的综合应用,难度较难.(1)对于含参函数单调性的分析,可通过分析参数的临界值,由此分类讨论函数单调性;(2)利用导数证明不等式常用方法:构造函数,利用新函数的单调性确定函数的最值,从而达到证明不等式的目的.21、(1)()()分布表见解析;(2)理由见解析【解析】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他们在一轮游戏中,对四种食物排出的序号完全不同的概率(
18、ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,由此能求出X的分布列(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X4)=P(X=0)+ P(X=2)=,三轮游戏结果都满足“X4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3
19、421,4123,4312,4321,家长的排序与对应位置的数字完全不同的概率P基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,他们在一轮游戏中,对四种食物排出的序号完全不同的概率为(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表: X 02 4 6 8 10 12 14 16 18 20 P
20、(2)这位家长对小孩的饮食习惯比较了解理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X4)P(X0)+P(X2),三轮游戏结果都满足“X4”的概率为()3,这个结果发生的可能性很小,这位家长对小孩饮食习惯比较了解【点睛】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题22、(1),.(2)见解析【解析】(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,即,由,得,当且仅当,即,时等号成立.故,即.【点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.