河南省周口市扶沟县重点名校2023年中考适应性考试数学试题含解析.doc

上传人:lil****205 文档编号:88311756 上传时间:2023-04-25 格式:DOC 页数:17 大小:952KB
返回 下载 相关 举报
河南省周口市扶沟县重点名校2023年中考适应性考试数学试题含解析.doc_第1页
第1页 / 共17页
河南省周口市扶沟县重点名校2023年中考适应性考试数学试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《河南省周口市扶沟县重点名校2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河南省周口市扶沟县重点名校2023年中考适应性考试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1计算结果是( )A0B1C1Dx2郑州地

2、铁号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()ABCD3下列图形中,既是中心对称图形又是轴对称图形的是()A正五边形 B平行四边形 C矩形 D等边三角形4在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球两次都摸到黄球的概率是()A B CD 5如图,RtABC中,ACB90,AB5,AC4,CDAB于D,则tanBCD的值为()ABCD6将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应

3、的函数表达式是( )ABCD7二次函数y=ax2+bx+c(a0)的图象如图,则反比例函数y=与一次函数y=bxc在同一坐标系内的图象大致是( )ABCD8如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A cmBcmCcmD cm9下列四个实数中是无理数的是( )A2.5 B C D1.41410实数5.22的绝对值是()A5.22B5.22C5.22D二、填空题(共7小题,每小题3分,满分21分)11比较大小: _1(填“”、“”或“”)12已知,是成比例的线段,其中,则_13一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一

4、个球不放回,再摸出一个球,则两次都摸到白球的概率是_.14如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tanAOC=,反比例函数y=的图象经过点C,与AB交于点D,若COD的面积为20,则k的值等于_.15化简: =_16计算的结果为_17分解因式:ax22ax+a=_三、解答题(共7小题,满分69分)18(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网

5、店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.19(5分)计算:解不等式组,并写出它的所有整数解20(8分)如图,在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象与反比例函数y(n0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,1),ADx轴,且AD3,tanAOD求该反比例函数和一次函数的解析式;求AOB的面积;点E是x轴上一点,且AOE是等腰三角形,请直接写出所有符合条件的E点的坐标21(10分)如图,ABC和BEC均为等腰直角三角形,且ACBBEC90,A

6、C4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE1,求PBD的面积22(10分)如图,ABC中,ACB=90,以BC为直径的O交AB于点D,过点D作O的切线交CB的延长线于点E,交AC于点F(1)求证:点F是AC的中点;(2)若A=30,AF=,求图中阴影部分的面积23(12分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程该项绿化工程原计划每天完成多

7、少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24(14分)新春佳节,电子鞭炮因其安全、无污染开始走俏某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=2x+320(80x160)设这种电子鞭炮每天的销售利润为w元(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要

8、想每天获得2400元的销售利润,又想卖得快那么销售单价应定为多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题解析:.故选C.考点:分式的加减法.2、C【解析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,恰好选择从同一个口进出的概率为=,故选C【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列

9、出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比3、C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际

10、解题时,可以加快解题速度,也可以提高正确率.4、A【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,两次都摸到黄球的概率为,故选A【点睛】此题考查的是用列表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验5、D【解析】先求得ABCD,然后根据锐角三角函数的概念求解即可【详解】解:ACB

11、90,AB5,AC4,BC3,在RtABC与RtBCD中,A+B90,BCD+B90ABCDtanBCDtanA,故选D【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值6、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,代入得:y=(x+1)1-1所得图象的解析式为:y=(x+1)1-1;故选:B【点睛】本题考查二次函数图象的平移规律;解决本题的关键

12、是得到新抛物线的顶点坐标7、C【解析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论【详解】解:观察二次函数图象可知:开口向上,a1;对称轴大于1,1,b1;二次函数图象与y轴交点在y轴的正半轴,c1反比例函数中ka1,反比例函数图象在第二、四象限内;一次函数ybxc中,b1,c1,一次函数图象经过第二、三、四象限故选C【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系

13、数与图象的关系即可得出结论8、B【解析】试题解析:菱形ABCD的对角线 根据勾股定理, 设菱形的高为h,则菱形的面积 即 解得 即菱形的高为cm故选B9、C【解析】本题主要考查了无理数的定义根据无理数的定义:无限不循环小数是无理数即可求解解:A、2.5是有理数,故选项错误;B、是有理数,故选项错误;C、是无理数,故选项正确;D、1.414是有理数,故选项错误故选C10、A【解析】根据绝对值的性质进行解答即可【详解】实数5.1的绝对值是5.1故选A【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据算术平方根的定义即可求

14、解【详解】解:1,1,1故答案为【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数12、【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段根据定义adcb,将a,b及c的值代入即可求得d【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:adcb,代入a3,b2,c6,解得:d4,则d4cm故答案为:4【点睛】本题主要考查比例线段的定义要注意考虑问题要全面13、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案【详解】画树状图得: 共有12

15、种等可能的结果,两次都摸到白球的有2种情况,两次都摸到白球的概率是:=.故答案为:.【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.14、24【解析】分析:如下图,过点C作CFAO于点F,过点D作DEOA交CO于点E,设CF=4x,由tanAOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2SCOD=40=OACF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.详解:如下图,过点C作CFAO于点F,过点D作DEOA交CO于点E,设CF=4x,四边形ABCO是菱形,ABCO,AOBC

16、,DEAO,四边形AOED和四边形DECB都是平行四边形,SAOD=SDOE,SBCD=SCDE,S菱形ABCD=2SDOE+2SCDE=2SCOD=40,tanAOC=,CF=4x,OF=3x,在RtCOF中,由勾股定理可得OC=5x,OA=OC=5x,S菱形ABCO=AOCF=5x4x=20x2=40,解得:x=,OF=,CF=,点C的坐标为,点C在反比例函数的图象上,k=.故答案为:-24.点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,SCOD=20得到S菱形ABCO=2SC

17、OD=40.15、【解析】先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可【详解】原式,故答案为【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键16、2【解析】根据分式的运算法则即可得解.【详解】原式,故答案为:【点睛】本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.17、a(x-1)1【解析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解【详解】解:ax1-1ax+a,=a(x1-1x+1),=a(x-1)1【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式

18、分解要彻底,直到不能分解为止三、解答题(共7小题,满分69分)18、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30

19、)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键

20、,能从实际问题中抽象出二次函数模型是解答本题的重点和难点19、(1);(1)0,1,1.【解析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式11 ,7(1) ,解不等式得:x1,解不等式得:x1,不等式组的解集是:1x1故不等式组的整数解是:0,1,1【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键20、(1)y,yx+2;(2)6;(3)当点E(4,0)或(,0

21、)或(,0)或(,0)时,AOE是等腰三角形【解析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC4,即可得出AOB的面积436;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可【详解】(1)如图,在RtOAD中,ADO90,tanAOD,AD3,OD2,A(2,3),把A(2,3)代入y,考点:n3(2)6,所以反比例函数解析式为:y,把B(m,1)代入y,得:m6,把A(2,3),B(6,1)分别代入ykx+b,得:,解得:,所以一次函数解析式为:yx+2;(2)当y0时, x+20,解得:x4,则C(4,0),所以

22、;(3)当OE3OE2AO,即E2(,0),E3(,0);当OAAE1时,得到OE12OD4,即E1(4,0);当AE4OE4时,由A(2,3),O(0,0),得到直线AO解析式为yx,中点坐标为(1,1.5),令y0,得到y,即E4(,0),综上,当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键21、 (1)见解析;(2) ACBD,理由见解析;(3)【解析】(1)直接利用相似三角形的判定方法得出BCEDCP,进而得出答案;(2)首先得出PCEDCB,进而求出ACB=CBD,即可得出AC与BD

23、的位置关系;(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到PBD的面积【详解】(1)证明:BCE和CDP均为等腰直角三角形,ECBPCD45,CEBCPD90,BCEDCP,;(2)解:结论:ACBD,理由:PCE+ECDBCD+ECD45,PCEBCD,又,PCEDCB,CBDCEP90,ACB90,ACBCBD,ACBD;(3)解:如图所示:作PMBD于M,AC4,ABC和BEC均为等腰直角三角形,BECE4,PCEDCB,即,BD,PBMCBDCBP45,BPBE+PE4+15,PM5sin45PBD的面积SBDPM【点睛】本题考查相似三角形的性质和判定

24、,解题的关键是掌握相似三角形的性质和判定.22、(1)见解析;(2) 【解析】(1)连接OD、CD,如图,利用圆周角定理得到BDC=90,再判定AC为O的切线,则根据切线长定理得到FD=FC,然后证明3=A得到FD=FA,从而有FC=FA;(2)在RtACB中利用含30度的直角三角形三边的关系得到BC=AC=2,再证明OBD为等边三角形得到BOD=60,接着根据切线的性质得到ODEF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=SODE-S扇形BOD进行计算即可【详解】(1)证明:连接OD、CD,如图,BC为直径,BDC=90,ACB=90,AC为O的切线,EF为O的切线,F

25、D=FC,1=2,1+A=90,2+3=90,3=A,FD=FA,FC=FA,点F是AC中点;(2)解:在RtACB中,AC=2AF=2,而A=30,CBA=60,BC=AC=2,OB=OD,OBD为等边三角形,BOD=60,EF为切线,ODEF,在RtODE中,DE=OD=,S阴影部分=SODES扇形BOD=1=【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式23、 (1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平

26、移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米; (2)设人行道的宽度为x米,根据题意得,(203x)(82x)=56 解得:x=2或x=(不合题意,舍去)答:人行道的宽为2米24、(1)w=2x2+480x25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元【解析】(1)用每件的利润乘以销售量即可得到每天的销售利润,即 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;(3)求所对应的自变量的值,即解方程然后检验即可.【详解】(1) w与x的函数关系式为: (2) 当时,w有最大值w最大值为1答:销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)当时, 解得: 想卖得快,不符合题意,应舍去答:销售单价应定为100元

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁