《福建省泉州市泉港一中学2022-2023学年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省泉州市泉港一中学2022-2023学年中考猜题数学试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A
2、5.3103B5.3104C5.3107D5.31082下列各数中,最小的数是( )A4 B3 C0 D23如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表: 转盘总次数10203050100150180240330450“和为7”出现频数27101630465981110150“和为7”出现频率0.200.350.330.320.300.300.330.340.330.33
3、如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )A0.33B0.34C0.20D0.354tan60的值是( )ABCD5计算3(5)的结果等于()A15 B8 C8 D156的相反数是()AB2CD7若正六边形的半径长为4,则它的边长等于( )A4B2CD8如图,在ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则A的大小是()A36B54C72D309二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)10已知反比例函
4、数y=的图象在一、三象限,那么直线y=kxk不经过第()象限A一B二C三D四二、填空题(本大题共6个小题,每小题3分,共18分)11规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:1.3=1,(1.3)=3,1.3)=1则下列说法正确的是_(写出所有正确说法的序号)当x=1.7时,x+(x)+x)=6;当x=1.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点12如图,在ABC中,ACB90,点D是CB边上一点,过点D作D
5、EAB于点E,点F是AD的中点,连结EF、FC、CE若AD2,CFE90,则CE_13若关于x的一元二次方程(a1)x2x+1=0有实数根,则a的取值范围为_14已知抛物线与直线在之间有且只有一个公共点,则的取值范围是_15方程3x25x+2=0的一个根是a,则6a210a+2=_16反比例函数的图象经过点和,则 _ 三、解答题(共8题,共72分)17(8分)已知:如图,AB为O的直径,AB=AC,BC交O于点D,DEAC于E(1)求证:DE为O的切线;(2)G是ED上一点,连接BE交圆于F,连接AF并延长交ED于G若GE=2,AF=3,求EF的长18(8分)如图是一副扑克牌中的三张牌,将它们
6、正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率19(8分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF20(8分)新农村社区改造中,有一部分楼盘要对外销售某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价
7、10%,没有其他赠送请写出售价y(元/米2)与楼层x(1x23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算21(8分)如图,已知直线l与O相离,OAl于点A,交O于点P,OA=5,AB与O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;(2)若,求O的半径.22(10分)已知:如图,在直角梯形ABCD中,ADBC,ABC=90,DEAC于点F,交BC于点G,交AB的延长线于点E,且AE=AC求证:BG=FG;若AD=DC=2,求AB的长23(12分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面
8、的宽度为10m时,桥洞与水面的最大距离是5m经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B点坐标是 ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度24在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】科学记数法的表示形式
9、为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).2、A【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】根据有理数比较大小的方法,可得4203各数中,最小的数是4故选:A【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而
10、小3、A【解析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确4、A【解析】根据特殊角三角函数值,可得答案【详解】tan60=故选:A【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键5、A【解析】按照有理数的运算规则计算即可.【详解】原式
11、=-35=-15,故选择A.【点睛】本题考查了有理数的运算,注意符号不要搞错.6、D【解析】因为-+0,所以-的相反数是.故选D.7、A【解析】试题分析:正六边形的中心角为3606=60,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1故选A考点:正多边形和圆8、A【解析】由BD=BC=AD可知,ABD,BCD为等腰三角形,设A=ABD=x,则C=CDB=2x,又由AB=AC可知,ABC为等腰三角形,则ABC=C=2x在ABC中,用内角和定理列方程求解【详解】解:BD=BC=AD,ABD,BCD为等腰三角形,设A=ABD=x,则C=CDB=2x
12、又AB=AC,ABC为等腰三角形,ABC=C=2x在ABC中,A+ABC+C=180,即x+2x+2x=180,解得:x=36,即A=36故选A【点睛】本题考查了等腰三角形的性质关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解9、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质10、B【解析】根据反比例函数的性质得k0,然后根据一次函数的进行判断直线y=kx-
13、k不经过的象限【详解】反比例函数y=的图象在一、三象限,k0,直线y=kxk经过第一、三、四象限,即不经过第二象限故选:B【点睛】考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式也考查了反比例函数与一次函数的性质二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题解析:当x=1.7时,x+(x)+x)=1.7+(1.7)+1.7)=1+1+1=5,故错误;当x=1.1时,x+(x)+x)=1.1+(1.1)+1.1)=(3)+(1)
14、+(1)=7,故正确;当1x1.5时,4x+3(x)+x)=41+31+1=4+6+1=11,故正确;1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x1时,y=x+(x)+x=0+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有三个交点,故错误,故答案为考点:1.两条直线相交或平行问题;1.有理
15、数大小比较;3.解一元一次不等式组12、【解析】根据直角三角形的中点性质结合勾股定理解答即可.【详解】解:,点F是AD的中点, .故答案为: .【点睛】此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.13、a且a1【解析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可【详解】由题意得:0,即(-1)2-4(a-1)10,解得a,又a-10,a且a1.故答案为a且a1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键14、或【解析】联立方程可得,设,从而得出的图象在上与x轴只有一个交点,当时,求出此时m的值;
16、当时,要使在之间有且只有一个公共点,则当x=-2时和x=2时y的值异号,从而求出m的取值范围;【详解】联立可得:,令,抛物线与直线在之间有且只有一个公共点,即的图象在上与x轴只有一个交点,当时,即解得:,当时,当时,满足题意,当时,令,令,令代入解得:,此方程的另外一个根为:,故也满足题意,故的取值范围为:或故答案为: 或.【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键15、-1【解析】根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a
17、的值后,将其整体代入所求的代数式并求值即可【详解】解:方程3x1-5x+1=0的一个根是a,3a1-5a+1=0,3a1-5a=-1,6a1-10a+1=1(3a1-5a)+1=-11+1=-1故答案是:-1【点睛】此题主要考查了方程解的定义此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值16、-1【解析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值【详解】解:反比例函数y=的图象经过点(1,6),6=,解得k=6,反比例
18、函数的解析式为y=点(m,-3)在此函数图象上上,-3=,解得m=-1故答案为-1【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键三、解答题(共8题,共72分)17、(1)见解析;(2)EAF的度数为30【解析】(1)连接OD,如图,先证明ODAC,再利用DEAC得到ODDE,然后根据切线的判定定理得到结论;(2)利用圆周角定理得到AFB=90,再证明RtGEFRtGAE,利用相似比得到 于是可求出GF=1,然后在RtAEG中利用正弦定义求出EAF的度数即可【详解】(1)证明:连接OD,如图,OB=OD,OBD=ODB,AB
19、=AC,ABC=C,ODB=C,ODAC,DEAC,ODDE,DE为O的切线;(2)解:AB为直径,AFB=90,EGF=AGF,RtGEFRtGAE,即整理得GF2+3GF4=0,解得GF=1或GF=4(舍去),在RtAEG中,sinEAG EAG=30,即EAF的度数为30【点睛】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理18、 【解析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果
20、数,然后根据概率公式求解【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率19、见解析【解析】根据条件可以得出AD=AB,ABF=ADE=90,从而可以得出ABFADE,就可以得出FAB=EAD,就可以得出结论【详解】证明:四边形ABCD是正方形,AB=AD,ABC=D=BAD=90,ABF=90在BAF和DAE中, ,BAFDAE(SAS),FAB=EAD,EAD+
21、BAE=90,FAB+BAE=90,FAE=90,EAAF20、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算【解析】解:(1)当1x8时,每平方米的售价应为:y=4000(8x)30=30x+3760 (元/平方米)当9x23时,每平方米的售价应为:y=4000+(x8)50=50x+3600(元/平方米)(2)第十六层楼房的每平方米的价格为:5016+3600=4400(元/平方米),按照方案一所交房款为:W1=4400120(18%)a=485
22、760a(元),按照方案二所交房款为:W2=4400120(110%)=475200(元),当W1W2时,即485760a475200,解得:0a10560,当W1W2时,即485760a475200,解得:a10560,当0a10560时,方案二合算;当a10560时,方案一合算【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键21、(1)证明见解析;(2)1【解析】(1)由同圆半径相等和对顶角相等得OBP=APC,由圆的切线性质和垂直得ABP+OBP=90和ACB+APC=90,则ABP=ACB,根据等角对等边得AB=A
23、C;(2)设O的半径为r,分别在RtAOB和RtACP中根据勾股定理列等式,并根据AB=AC得52r2=(2)2(5r)2,求出r的值即可【详解】解:(1)连接OB,OB=OP,OPB=OBP,OPB=APC,OBP=APC,AB与O相切于点B,OBAB,ABO=90,ABP+OBP=90,OAAC,OAC=90,ACB+APC=90,ABP=ACB,AB=AC;(2)设O的半径为r,在RtAOB中,AB2=OA2OB2=52r2,在RtACP中,AC2=PC2PA2,AC2=(2)2(5r)2,AB=AC,52r2=(2)2(5r)2,解得:r=1,则O的半径为1【点睛】本题考查了圆的切线的
24、性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直22、(1)证明见解析;(2)AB=【解析】(1)证明:,DEAC于点F,ABC=AFEAC=AE,EAF=CAB,ABCAFEAB=AF连接AG,AG=AG,AB=AFRtABGRtAFGBG=FG(2)解:AD=DC,DFACE=30FAD=E=30AB=AF=23、 (1) 方案1; B(5,0); ;(2) 3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式(2)把x=
25、3代入抛物线的解析式,即可得到结论试题解析:解:方案1:(1)点B的坐标为(5,0),设抛物线的解析式为:由题意可以得到抛物线的顶点为(0,5),代入解析式可得:,抛物线的解析式为:;(2)由题意:把代入,解得:=3.2,水面上涨的高度为3.2m方案2:(1)点B的坐标为(10,0)设抛物线的解析式为:由题意可以得到抛物线的顶点为(5,5),代入解析式可得:,抛物线的解析式为:;(2)由题意:把代入解得:=3.2,水面上涨的高度为3.2m方案3:(1)点B的坐标为(5, ),由题意可以得到抛物线的顶点为(0,0)设抛物线的解析式为:,把点B的坐标(5, ),代入解析式可得:,抛物线的解析式为:
26、;(2)由题意:把代入解得:=,水面上涨的高度为3.2m24、(1)10%;(1)会跌破10000元/m1【解析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,14000(1-x)1=11340,(1-x)1=0.81,x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=113400.81=9184.510000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键