《甘肃省平凉崆峒区重点达标名校2023年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省平凉崆峒区重点达标名校2023年中考数学押题试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,直线mn,直角三角板ABC的顶点A在直线m上,则的余角等于( )A19B38C42D522如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )ABCD3关于x的一元二次方程(a1)x2+x+a210的一个根为0,则a值为()A1B
2、1C1D04下列运算结果是无理数的是()A3BCD5下列运算正确的是()A(a1)a1B(2a3)24a6C(ab)2a2b2Da3+a22a56济南市某天的气温:-58,则当天最高与最低的温差为( )A13B3C-13D-37已知m,n,则代数式的值为 ()A3B3C5D98下列计算正确的是()Aa2+a2=a4Ba5a2=a7C(a2)3=a5D2a2a2=29如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BCCDDA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动设P点运动时间为x(s),BPQ的面积
3、为y(cm2),则y关于x的函数图象是( )ABCD10一个圆锥的侧面积是12,它的底面半径是3,则它的母线长等于()A2 B3 C4 D6二、填空题(本大题共6个小题,每小题3分,共18分)11如图,直线yk1xb与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1xb的解集是12数学的美无处不在数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:我
4、们称15、12、10这三个数为一组调和数现有一组调和数:x,5,3(x5),则x的值是13如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_14如图,已知O是ABD的外接圆,AB是O的直径,CD是O的弦,ABD=58,则BCD的度数是_15如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k0,x0)的图象过点B,E若AB=2,则k的值为_ 16如图,四边形ABCD中,D=B=90,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则CQR 的周长的最小值为_ 三、解答题(共
5、8题,共72分)17(8分)已知:ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)画出ABC向下平移4个单位得到的A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出A2BC2,使A2BC2与ABC位似,且位似比为21,并直接写出C2点的坐标及A2BC2的面积18(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60m100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表征文比赛成绩频数分布表分数段频数频率60m70380
6、.3870m80a0.3280m90bc90m100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是 ;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数19(8分)RtABC中,ABC=90,以AB为直径作O交AC边于点D,E是边BC的中点,连接DE,OD(1)如图,求ODE的大小;(2)如图,连接OC交DE于点F,若OF=CF,求A的大小20(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏
7、电灯,既可三盏、两盏齐开,也可分别单盏开因刚搬进新房不久,不熟悉情况若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明21(8分)货车行驶25与轿车行驶35所用时间相同已知轿车每小时比货车多行驶20,求货车行驶的速度22(10分)如图,在RtABC中,ABC=90,AB=CB,以AB为直径的O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交O于点G,DFDG,且交BC于点F(1)求证:AE=BF;(2)连接GB,EF,求证:GBEF;(3)若AE=1,EB=
8、2,求DG的长23(12分)已知关于x的一元二次方程kx26x+10有两个不相等的实数根(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根24为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项)为了解学生喜爱哪种社团活动,学校做了一次抽样调查根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人
9、?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:过C作CD直线m,mn,CDmn,DCA=FAC=52,=DCB,ACB=90,=9052=38,则a的余角是52故选D考点:平行线的性质;余角和补角2、B【解析】根据旋转的性质可得ACAC,然后判断出ACA是等腰直角三角形,根据等腰直角三角形的性质可得CAA45,再根据三角形的一个外角等于与它不相邻的两个内角的和求出ABC,最后根据旋转的性质可得BABC【详解】解:RtABC绕直角顶点C顺时针旋转90得到ABC,ACAC,ACA是等腰直角三角形,CAA45,ABC1CAA204565,BABC65故选B【点睛】本
10、题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键3、B【解析】根据一元二次方程的定义和一元二次方程的解的定义得出:a10,a210,求出a的值即可【详解】解:把x0代入方程得:a210,解得:a1,(a1)x2+x+a210是关于x的一元二次方程,a10,即a1,a的值是1故选:B【点睛】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a10,a210,不要漏掉对一元二次方程二次项系数不为0的考虑4、B【解析】根据二次根式的运算法则即可求出答案【详解】A选项:原式326,故
11、A不是无理数;B选项:原式,故B是无理数;C选项:原式6,故C不是无理数;D选项:原式12,故D不是无理数故选B【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型5、B【解析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解【详解】解:A、因为(a1)=a+1,故本选项错误;B、(2a3)2=4a6,正确;C、因为(ab)2=a22ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误故选B【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键6、A【解
12、析】由题意可知,当天最高温与最低温的温差为8-(-5)=13,故选A.7、B【解析】由已知可得:,=.【详解】由已知可得:,原式=故选:B【点睛】考核知识点:二次根式运算.配方是关键.8、B【解析】根据整式的加减乘除乘方运算法则逐一运算即可。【详解】A. ,故A选项错误。 B. ,故B选项正确。C.,故C选项错误。 D. ,故D选项错误。故答案选B.【点睛】本题考查整式加减乘除运算法则,只需熟记法则与公式即可。9、C【解析】试题分析:由题意可得BQ=x0x1时,P点在BC边上,BP=3x,则BPQ的面积=BPBQ,解y=3xx=;故A选项错误;1x2时,P点在CD边上,则BPQ的面积=BQBC
13、,解y=x3=;故B选项错误;2x3时,P点在AD边上,AP=93x,则BPQ的面积=APBQ,解y=(93x)x=;故D选项错误故选C考点:动点问题的函数图象10、C【解析】设母线长为R,底面半径是3cm,则底面周长=6,侧面积=3R=12,R=4cm故选C二、填空题(本大题共6个小题,每小题3分,共18分)11、2x1或x1【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质不等式k1xb的解集即k1xb的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线yk1xb在双曲线下方的自变量x的取值范围即可而直线yk1xb的图象可以由yk1xb向下平移2b个单
14、位得到,如图所示根据函数图象的对称性可得:直线yk1xb和yk1xb与双曲线的交点坐标关于原点对称由关于原点对称的坐标点性质,直线yk1xb图象与双曲线图象交点A、B的横坐标为A、B两点横坐标的相反数,即为1,2由图知,当2x1或x1时,直线yk1xb图象在双曲线图象下方不等式k1xb的解集是2x1或x112、1【解析】依据调和数的意义,有,解得x1.13、3.【解析】先根据同角的余角相等证明ADEACD,在ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90,AB
15、CD,DEAC,AED90,ADE+DAE90,DAE+ACD90,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.14、32【解析】根据直径所对的圆周角是直角得到ADB=90,求出A的度数,根据圆周角定理解答即可【详解】AB是O的直径,ADB=90,ABD=58,A=32,BCD=32,故答案为3215、【解析】解:设E(x,x),B(2,x+2),反比例函数 (k0,x0)的图象
16、过点B. E.x2=2(x+2), ,(舍去), ,故答案为16、【解析】作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长CQQRCRGQQRRFGF根据圆周角定理可得CDBCAB45,CBDCAD30,由于GF2BD,在三角形CBD中,作CHBD于H,可求BD的长,从而求出CQR的周长的最小值【详解】解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长CQQRCRGQQRRFGF, 在RtADC中,sinDAC,DAC30,BABC,ABC90,BACBCA45,ADCABC90,A,B,C,D四点共圆,CDBCAB45,CBDCAD30在三角形CBD中,作
17、CHBD于H,BDDHBH4cos45cos30,CDDF,CBBG,GF2BD,CQR的周长的最小值为【点睛】本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答三、解答题(共8题,共72分)17、解:(1)如图,A1B1C1即为所求,C1(2,2)(2)如图,A2BC2即为所求,C2(1,0),A2BC2的面积:10【解析】分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、 的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用B所在的矩形的
18、面积减去四周三个小直角三角形的面积,列式计算即可得解本题解析:(1)如图,A1B1C1即为所求,C1(2,2)(2)如图,B为所求, (1,0),B 的面积:64262424=24644=2414=10,18、(1)0.2;(2)答案见解析;(3)300【解析】第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.【详解】解:(1)10.380.320.1=0.2,故答案为0.2;(2)100.1=100,1000.3
19、2=32,1000.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000(0.2+0.1)=300(篇)【点睛】掌握有关频率和频数的相关概念和计算,是解答本题的关键.19、(1)ODE=90;(2)A=45.【解析】分析:()连接OE,BD,利用全等三角形的判定和性质解答即可; ()利用中位线的判定和定理解答即可详解:()连接OE,BD AB是O的直径,ADB=90,CDB=90 E点是BC的中点,DE=BC=BE OD=OB,OE=OE,ODEOBE,ODE=OBE ABC=90,ODE=90; ()CF=OF,CE=EB,FE是COB的中位线,FEOB,AO
20、D=ODE,由()得ODE=90,AOD=90 OA=OD,A=ADO=点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答20、(1);(2).【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是13;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,正好客厅灯和走廊灯同时亮的概率是=.考点:概率的计算.21、50千
21、米/小时.【解析】根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可【详解】解:设货车的速度为x千米/小时,依题意得:解:根据题意,得 解得:x=50经检验x=50是原方程的解.答:货车的速度为50千米/小时.【点睛】本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.22、(1)详见解析;(2)详见解析;(3)【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出A与C的度数,根据AB为圆的直径,利用圆周角定理得到ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出A=FBD,
22、再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可(1)证明:连接BD,在RtABC中
23、,ABC=90,AB=BC,A=C=45,AB为圆O的直径,ADB=90,即BDAC,AD=DC=BD=AC,CBD=C=45,A=FBD,DFDG,FDG=90,FDB+BDG=90,EDA+BDG=90,EDA=FDB,在AED和BFD中,A=FBD,AD=BD,EDA=FDB,AEDBFD(ASA),AE=BF;(2)证明:连接EF,BG,AEDBFD,DE=DF,EDF=90,EDF是等腰直角三角形,DEF=45,G=A=45,G=DEF,GBEF;(3)AE=BF,AE=1,BF=1,在RtEBF中,EBF=90,根据勾股定理得:EF2=EB2+BF2,EB=2,BF=1,EF=,D
24、EF为等腰直角三角形,EDF=90,cosDEF=,EF=,DE=,G=A,GEB=AED,GEBAED,即GEED=AEEB,GE=2,即GE=,则GD=GE+ED=23、(1)(2) , 【解析】【分析】(1)根据一元二次方程的定义可知k0,再根据方程有两个不相等的实数根,可知0,从而可得关于k的不等式组,解不等式组即可得;(2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.【详解】(1) 依题意,得,解得且;(2) 是小于9的最大整数,此时的方程为,解得,. 【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二
25、次方程的根的情况是解题的关键.24、(1)200;(2)108;(3)答案见解析;(4)600【解析】试题分析:(1)根据体育人数80人,占40%,可以求出总人数(2)根据圆心角=百分比360即可解决问题(3)求出艺术类、其它类社团人数,即可画出条形图(4)用样本百分比估计总体百分比即可解决问题试题解析:(1)8040%=200(人)此次共调查200人(2)360=108文学社团在扇形统计图中所占圆心角的度数为108(3)补全如图,(4)150040%=600(人)估计该校喜欢体育类社团的学生有600人【点睛】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题型