《陕西省商洛市丹凤县丹凤中学2023年高三冲刺模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省商洛市丹凤县丹凤中学2023年高三冲刺模拟数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知实数满足线性约束条件,则的取值范围为( )A(-2,-1B(-1,4C-2,4)D0,42复数(为虚数单位),则等于( )A3BC2D3执行如图所示的程序框图若输入,则输出的的值为( )ABCD4从5名学生中选出4名分别参加数学,物理,化学,生物
2、四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A48B72C90D965在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是( )ABCD6已知函数,则,的大小关系为( )ABCD7已知集合A2,1,0,1,2,Bx|x24x50,则AB()A2,1,0B1,0,1,2C1,0,1D0,1,28抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )ABCD9已知椭圆:的左、右焦点分别为,过的直线与轴交于点,线段与交于点.若,则的方程为( )ABCD10在正方体中,球同时与以为公共顶点的三个面相切,球同
3、时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则( )ABCD11函数的图象可能为( )ABCD12把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在矩形ABCD中,点E,F分别为BC,CD边上动点,且满足,则的最大值为_.14已知函数,若方程的解为,(),则_;_15已知,则的最小值是_16已知一个四面体的每个顶点都在表面积为的球的表面上,且,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线与直线.(1)
4、求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.18(12分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,.(1)若,证明:平面平面;(2)若三棱锥的体积为,求二面角的余弦值.19(12分)已知抛物线:,点为抛物线的焦点,焦点到直线的距离为,焦点到抛物线的准线的距离为,且.(1)求抛物线的标准方程;(2)若轴上存在点,过点的直线与抛物线相交于、两点,且为定值,求点的坐标.20(12分)已知函数.()已知是的一个极值点,求曲线在处的切线方程()讨论关于的方程根的个数.21(12分)
5、如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将,中的两个补充到已知条件中,解答下列问题:(1)求平面将四棱锥分成两部分的体积比;(2)求直线与平面所成角的正弦值.22(10分)设数阵,其中、设,其中,且定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、)表示“将经过变换得到,再将经过变换得到、 ,以此类推,最后将经过变换得到”,记数阵中四个数的和为(1)若,写出经过变换后得到的数阵;(2)若,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过参考答案一、选择题:本题共12小题,
6、每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值【详解】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,过与直线平行的直线斜率为1,故选:B【点睛】本题考查简单的非线性规划解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论2、D【解析】利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【详解】,所以,故选:D.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基
7、础题目.3、C【解析】由程序语言依次计算,直到时输出即可【详解】程序的运行过程为当n=2时,时,此时输出.故选:C【点睛】本题考查由程序框图计算输出结果,属于基础题4、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛当甲参加另外3场比赛时,共有=72种选择方案;当甲学生不参加任何比赛时,共有=24种选择方案综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题5、A【解析】由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:复数
8、z=i(i为虚数单位)在复平面中对应点Z(0,1),(0,1),将绕原点O逆时针旋转得到,设(a,b),则,即,又,解得:,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.6、B【解析】可判断函数在上单调递增,且,所以.【详解】在上单调递增,且,所以.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.7、D【解析】解一元二次不等式化简集合,再由集合的交集运算可得选项.【详解】因为集合,故选:D.【点睛】本题考查集合的交集运算,属于基础题.8、A【解析】首先求出样本空间样本点为个,再利用分类计
9、数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1_ _,_1_,_ _1剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个故不同的样本点数为8个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题9、D【解析】由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,所以椭
10、圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.10、D【解析】由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以. 故选:D【点睛】本题考查立体图与平面
11、图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养11、C【解析】先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.12、A【解析】先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,解得,.因为为偶函数,故直线为其图象的对称轴,令,故,因为,故,当时,.故选:A.【点睛】本题考查三角函数的图象变换以及三角函数的图象性
12、质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用平面直角坐标系,设出点E,F的坐标,由可得,利用数量积运算求得,再利用线性规划的知识求出的最大值.【详解】建立平面直角坐标系,如图(1)所示:设, ,即,又,令,其中,画出图形,如图(2)所示:当直线经过点时,取得最大值.故答案为:【点睛】本题考查了向量数量积的坐标运算、简单的线性规划问题,解题的关键是建立恰当的坐标系,属于基础题.14、 【解析】求出在 上的对称轴,依据对称性可得的
13、值;由可得,依据可求出的值.【详解】解:令,解得 因为,所以 关于 对称.则.由,则由可知,又因为 ,所以,则,即故答案为: ;.【点睛】本题考查了三角函数的对称轴,考查了诱导公式,考查了同角三角函数的基本关系.本题的易错点在于没有正确判断的取值范围,导致求出.在求的对称轴时,常用整体代入法,即令 进行求解.15、【解析】因为,展开后利用基本不等式,即可得到本题答案.【详解】由,得,所以,当且仅当,取等号.故答案为:【点睛】本题主要考查利用基本不等式求最值,考查学生的转化能力和运算求解能力.16、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:
14、,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析,或【解析】(1)根据点到直线的公式结合二次函数的性质即可求出;(2)设,表示出直线,的方程,利用表示出,即可求定点的坐标【详解】(1)设抛物线上点的坐标为,则,时取等号),则抛物线上
15、的点到直线距离的最小值;(2)设,直线,的方程为分别为,由两条直线都经过点点得,为方程的两根,直线的方程为,共线又,解,点,是直线上的动点,时,时,或【点睛】本题考查抛物线的方程的求法,考查直线方程的求法,考查直线过定点的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力18、(1)见解析(2)【解析】(1)由已知可证得平面,则有,在中,由已知可得,即可证得平面,进而证得结论.(2) 过作交于,由为的中点,结合已知有平面.则,可求得.建立坐标系分别求得面的法向量,平面的一个法向量为,利用公式即可求得结果.【详解】(1)证明:平面,平面,,又四边形为正方形,.又、平面,且,平面.中,为的中
16、点,.又、平面,平面.平面,平面平面.(2)解:过作交于,如图为的中点,.又平面,平面.,.所以,又、两两互相垂直,以、为坐标轴建立如图所示的空间直角坐标系.,设平面的法向量,则,即.令,则,.平面的一个法向量为.二面角的余弦值为.【点睛】本题考查面面垂直的证明方法,考查了空间线线、线面、面面位置关系,考查利用向量法求二面角的方法,难度一般.19、(1)(2)【解析】(1)先分别表示出,然后根据求解出的值,则的标准方程可求;(2)设出直线的方程并联立抛物线方程得到韦达定理形式,然后根据距离公式表示出并代入韦达定理形式,由此判断出为定值时的坐标.【详解】(1)由题意可得,焦点,则,解得.抛物线的
17、标准方程为(2)设,设点,显然直线的斜率不为0.设直线的方程为联立方程,整理可得,要使为定值,必有,解得,为定值时,点的坐标为【点睛】本题考查抛物线方程的求解以及抛物线中的定值问题,难度一般.(1)处理直线与抛物线相交对应的定值问题,联立直线方程借助韦达定理形式是常用方法;(2)直线与圆锥曲线的问题中,直线方程的设法有时能很大程度上起到简化运算的作用。20、();()见解析【解析】()求函数的导数,利用x=2是f (x)的一个极值点,得f (2) =0建立方程求出a的值,结合导数的几何意义进行求解即可;()利用参数法分离法得到,构造函数求出函数的导数研究函数的单调性和最值,利用数形结合转化为图
18、象交点个数进行求解即可.【详解】()因为,则,因为是的一个极值点,所以,即,所以,因为,则直线方程为,即;()因为,所以,所以,设,则,所以在上是增函数,在上是减函数,故,所以,所以,设,则,所以在上是减函数,上是增函数,所以,所以当时,函数在是减函数,当时,函数在是增函数,因为时,所以当时,方程无实数根,当时,方程有两个不相等实数根,当或时,方程有1个实根.【点睛】本题考查函数中由极值点求参,导数的几何意义,还考查了利用导数研究方程根的个数问题,属于难题.21、(1);(2).【解析】若补充根据已知可得平面,从而有,结合,可得平面,故有,而,得到,成立与相同,成立,可得,所以任意补充两个条件
19、,结果都一样,以作为条件分析;(1)设,可得,进而求出梯形的面积,可求出,即可求出结论;(2),以为坐标原点,建立空间坐标系,求出坐标,由(1)得为平面的法向量,根据空间向量的线面角公式即可求解.【详解】第一种情况:若将,作为已知条件,解答如下:(1)设平面为平面.,平面,而平面平面,又为中点.设,则.在三角形中,由知平面,梯形的面积,平面,故,.(2)如图,分别以所在直线为轴建立空间直角坐标系,设,则,由(1)得为平面的一个法向量,因为,所以直线与平面所成角的正弦值为.第二种情况:若将,作为已知条件,则由知平面,又,所以平面,又,故为中点,即,解答如上不变.第三种情况:若将,作为已知条件,由
20、及第二种情况知,又,易知,解答仍如上不变.【点睛】本题考查空间点、线、面位置关系,以及体积、直线与平面所成的角,考查计算求解能力,属于中档题.22、(1);(2);(3)见解析.【解析】(1)由,能求出经过变换后得到的数阵;(2)由,求出数阵经过变化后的矩阵,进而可求得的值;(3)分和两种情况讨论,推导出变换后数阵的第一行和第二行的数字之和,由此能证明的所有可能取值的和不超过【详解】(1),经过变换后得到的数阵;(2)经变换后得,故;(3)若,在的所有非空子集中,含有且不含的子集共个,经过变换后第一行均变为、;含有且不含的子集共个,经过变换后第一行均变为、;同时含有和的子集共个,经过变换后第一行仍为、;不含也不含的子集共个,经过变换后第一行仍为、所以经过变换后所有的第一行的所有数的和为.若,则的所有非空子集中,含有的子集共个,经过变换后第一行均变为、;不含有的子集共个,经过变换后第一行仍为、所以经过变换后所有的第一行的所有数的和为同理,经过变换后所有的第二行的所有数的和为所以的所有可能取值的和为,又因为、,所以的所有可能取值的和不超过【点睛】本题考查数阵变换的求法,考查数阵中四个数的和不超过的证明,考查类比推理、数阵变换等基础知识,考查运算求解能力,综合性强,难度大