《福建省莆田第二十五中学2023届中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《福建省莆田第二十五中学2023届中考猜题数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列二次根式,最简二次根式是( )ABCD2若,则的值是()A2B2C4D43如图,向四个形状不同高同为h的水瓶中注水,注满为止如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()ABCD4下列图形是中心对称图形的是( )
2、ABCD5若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )ABCD6如图,直线ABCD,AE平分CAB,AE与CD相交于点E,ACD=40,则DEA=()A40B110C70D1407在实数|3|,2,0,中,最小的数是()A|3|B2C0D8由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )ABCD9下列四个图形中,是中心对称图形但不是轴对称图形的是()ABCD10下列生态环保标志中,是中心对称图形的是()A B C D二、填空题(本大题共6个小题,每小题3分,共18分)11在如图的正方形方格纸中,每个小的四边形都是相同的正方形,
3、A,B,C,D都在格点处,AB与CD相交于O,则tanBOD的值等于_12=_13一个凸多边形的内角和与外角和相等,它是_边形14已知二次函数y=x2,当x0时,y随x的增大而_(填“增大”或“减小”)15分解因式:ax22ax+a=_16已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_三、解答题(共8题,共72分)17(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球
4、类活动的人数的百分比为 (2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.18(8分)已知:不等式2+x(1)求不等式的解;(2)若实数a满足a2,说明a是否是该不等式的解19(8分)如图,矩形ABCD绕点C顺时针旋转90后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;(1)求证:AM=FM;(2)若AMD=a求证:=cos20(8分)如图,ABC是等腰直角三角形,
5、且AC=BC,P是ABC外接圆O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD(1)求证:PCBD;(2)若O的半径为2,ABP=60,求CP的长;(3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明21(8分)如图,在RtABC中,ABC=90,AB=CB,以AB为直径的O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交O于点G,DFDG,且交BC于点F(1)求证:AE=BF;(2)连接GB,EF,求证:GBEF;(3)若AE=1,EB=2,求DG的长22(10分)已知关于 的方程mx2+(2
6、m-1)x+m-1=0(m0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.23(12分)如图所示:ABC是等腰三角形,ABC=90(1)尺规作图:作线段AB的垂直平分线l,垂足为H(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH24佳佳向探究一元三次方程x3+2x2x2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k0)的解,二次函数y=ax2+bx+c(a0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a0)的解
7、,如:二次函数y=x22x3的图象与x轴的交点为(1,0)和(3,0),交点的横坐标1和3即为x22x3=0的解根据以上方程与函数的关系,如果我们直到函数y=x3+2x2x2的图象与x轴交点的横坐标,即可知方程x3+2x2x2=0的解佳佳为了解函数y=x3+2x2x2的图象,通过描点法画出函数的图象x321012y80m2012(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有 个,分别为 ;(3)借助函数的图象,直接写出不等式x3+2x2x+2的解集参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就
8、是最简二次根式,否则就不是【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式2、D【解析】因为,所以,因为,故选D.3、D【解析】根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,随着水的深度变高,需要的注水量也是均匀升高,水瓶的形状是圆柱,故选:D【点睛】此题重点
9、考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.4、B【解析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B.考点:中心对称图形.【详解】请在此输入详解!5、D【解析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为ykx,把点(3,2a)与点(8a,3)代入得出方程组 ,求出方程组的解即可【详解】解:设一次函数的解析式为:ykx,把点(3,2a)与点(8a,
10、3)代入得出方程组 ,由得:,把代入得: ,解得:.故选:D.【点睛】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力6、B【解析】先由平行线性质得出ACD与BAC互补,并根据已知ACD=40计算出BAC的度数,再根据角平分线性质求出BAE的度数,进而得到DEA的度数【详解】ABCD,ACD+BAC=180,ACD=40,BAC=18040=140,AE平分CAB,BAE=BAC=140=70,DEA=180BAE=110,故选B【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补7、B【解析】直接利用利用绝对值的性质化简,进
11、而比较大小得出答案【详解】在实数|-3|,-1,0,中,|-3|=3,则-10|-3|,故最小的数是:-1故选B【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键8、D【解析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中【详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形故选A【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大9、D【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】A、是轴对称图形,不是中心对称图形; B、是轴对称图形,不是中心对称图形; C、是
12、轴对称图形,不是中心对称图形; D、不是轴对称图形,是中心对称图形 故选D【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【考点】中心对称图形二、填空题(本大题共6个小题,每小题3分,共18分)11、3【解析】试题解析:平移CD到CD交AB于O,如图所示,则BOD=BOD,tanBOD=tanBOD,设每个小正方形的
13、边长为a,则OB=,OD=,BD=3a,作BEOD于点E,则BE=,OE=,tanBOE=,tanBOD=3.考点:解直角三角形12、2;【解析】试题解析:先求-2的平方4,再求它的算术平方根,即:.13、四【解析】任何多边形的外角和是360度,因而这个多边形的内角和是360度n边形的内角和是(n-2)180,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数【详解】解:设边数为n,根据题意,得(n-2)180=360,解得n=4,则它是四边形故填:四.【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决14、增大【解析】根据二次函数的增减性
14、可求得答案【详解】二次函数y=x2的对称轴是y轴,开口方向向上,当y随x的增大而增大.故答案为:增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.15、a(x-1)1【解析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解【详解】解:ax1-1ax+a,=a(x1-1x+1),=a(x-1)1【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止16、1.1【解析】【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论【详解】一
15、组数据4,x,1,y,7,9的众数为1,x,y中至少有一个是1,一组数据4,x,1,y,7,9的平均数为6,(4+x+1+y+7+9)=6,x+y=11,x,y中一个是1,另一个是6,这组数为4,1,1,6,7,9,这组数据的中位数是(1+6)=1.1,故答案为:1.1【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.三、解答题(共8题,共72分)17、(1)7、30%;(2)补图见解析;(3)105人;(3)【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全
16、条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解试题解析:解:(1)本次调查的总人数为1025%=40(人),参加音乐类活动的学生人数为4017.5%=7人,参加球类活动的人数的百分比为100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表
17、示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小18、(1)x1;(2)a是不等式的解【解析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得(2)根据不等式的解的定义求解可得【详解】解:(1)去分母得:2x3(2+x),去括号得:2x6+3x,移项、合并同类项得:4x4,系数化为1得:x1(2)a2,不等式的解集为x1,而21,a是不等式的解【点睛】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤是解题的关键19、(1)见解析;(2)见解析.【解析】(1)由旋转性质可知:AD=FG,DC=CG,可得CGD=45,可求FGH=FHG=45,
18、则HF=FG=AD,所以可证ADMMHF,结论可得(2)作FNDG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cos=cosFMG=,代入可证结论成立【详解】(1)由旋转性质可知:CD=CG且DCG=90,DGC=45从而DGF=45,EFG=90,HF=FG=AD又由旋转可知,ADEF,DAM=HFM,又DMA=HMF,ADMFHMAM=FM(2)作FNDG垂足为NADMMFHDM=MH,AM=MF=AFFH=FG,FNHGHN=NGDG=DM+HM+HN+NG=2(MH+HN)MN=DGcosFMG=cosAMD=cos【点睛】本题考
19、查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形20、(1)证明见解析;(2)+;(3)的值不变,.【解析】(1)根据等腰三角形的性质得到ABC=45,ACB=90,根据圆周角定理得到APB=90,得到APC=D,根据平行线的判定定理证明;(2)作BHCP,根据正弦、余弦的定义分别求出CH、PH,计算即可;(3)证明CBPABD,根据相似三角形的性质解答【详解】(1)证明:ABC是等腰直角三角形,且AC=BC,ABC=45,ACB=90,APC=ABC=45,AB为O的直径,APB=90,PD=PB,PBD=D=45,APC=D=45,PCBD;(2)作BHCP,垂足
20、为H,O的半径为2,ABP=60,BC=2,BCP=BAP=30,CPB=BAC=45,在RtBCH中,CH=BCcosBCH=,BH=BCsinBCH=,在RtBHP中,PH=BH=,CP=CH+PH=+;(3)的值不变,BCP=BAP,CPB=D,CBPABD,=,=,即=【点睛】本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键21、(1)详见解析;(2)详见解析;(3)【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出A与C的度数,根据AB为圆的直径,利用圆周角定理得到ADB为直角,即BD垂直于AC
21、,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出A=FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似
22、,由相似得比例,求出GE的长,由GE+ED求出GD的长即可(1)证明:连接BD,在RtABC中,ABC=90,AB=BC,A=C=45,AB为圆O的直径,ADB=90,即BDAC,AD=DC=BD=AC,CBD=C=45,A=FBD,DFDG,FDG=90,FDB+BDG=90,EDA+BDG=90,EDA=FDB,在AED和BFD中,A=FBD,AD=BD,EDA=FDB,AEDBFD(ASA),AE=BF;(2)证明:连接EF,BG,AEDBFD,DE=DF,EDF=90,EDF是等腰直角三角形,DEF=45,G=A=45,G=DEF,GBEF;(3)AE=BF,AE=1,BF=1,在Rt
23、EBF中,EBF=90,根据勾股定理得:EF2=EB2+BF2,EB=2,BF=1,EF=,DEF为等腰直角三角形,EDF=90,cosDEF=,EF=,DE=,G=A,GEB=AED,GEBAED,即GEED=AEEB,GE=2,即GE=,则GD=GE+ED=22、(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;(2)先利用求根公式得到然后利用有理数的整除性确定整数的值试题解析:(1)证明:m0,方程为一元二次方程, 此方程总有两个不相等的实数根;(2) 方程的两个实数根都是整数,且m是整数,m=1或m=1.
24、23、 (1)见解析;(2)证明见解析.【解析】(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案【详解】解:(1)如图所示:直线l即为所求;(2)证明:点H是AB的中点,且DHAB,DHBC,点D是AC的中点, AB=2DH.【点睛】考查作图基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.24、(1)2;(2)3,2,或1或1(3)2x1或x1【解析】试题分析:(1)求出x=1时的函数值即可解决问题;利用描点法画出图象即可;(2)利用图象以及表格即可解决问题;(3)不等式x3+2x2x+2的解集,即为函数y=x3+2x2x2的函数值大于2的自变量的取值范围,观察图象即可解决问题.试题解析:(1)由题意m=1+2+12=2函数图象如图所示(2)根据表格和图象可知,方程的解有3个,分别为2,或1或1(3)不等式x3+2x2x+2的解集,即为函数y=x3+2x2x2的函数值大于2的自变量的取值范围观察图象可知,2x1或x1