《福建省泉州市鲤城区北片区2023年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《福建省泉州市鲤城区北片区2023年中考数学全真模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1估计的值在 ( )A4和5之间B5和6之间C6和7之间D7和8之间2如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CHAF与点H,那么CH的长是( ) ABCD3青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米将 2500000 用科学记数法表示应为( )ABCD4若关于x的一元二次方程x22xk0没有实数根,则k的取值范围是( )Ak1Bk1Ck1Dk15中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A0
3、.96107B9.6106C96105D9.61026等腰三角形三边长分别为,且是关于的一元二次方程的两根,则的值为( )A9B10C9或10D8或107一个多边形的边数由原来的3增加到n时(n3,且n为正整数),它的外角和()A增加(n2)180B减小(n2)180C增加(n1)180D没有改变8据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A3.91010B3.9109C0.391011D391099在下列实数中,3,0,2,1中,绝对值最小的数是()A3B0CD110如图,在
4、ABC中,AB=AC=5,BC=6,点M为BC的中点,MNAC于点N,则MN等于()ABCD11小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )ABCD122019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A32,31B31,32C31,31D32,35二、填空题:(本大题共6个小题,每小题4分,共24分)13若反比例函数y的图象与一次函
5、数yx+k的图象有一个交点为(m,4),则这个反比例函数的表达式为_14化简的结果是_.15计算:=_16如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将AEF沿EF折叠,当折叠后点A的对应点A恰好落在BC的垂直平分线上时,折痕EF的长为_17如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm18一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3)若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_三、解答题:(本大题共9个小题,共
6、78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在RtABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(1,0),B(4,0),ACB90.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.图1 备用图20(6分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角BAD为45,BC部
7、分的坡角CBE为30,其中BDAD,CEBE,垂足为D,E现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算可能用到的数据:1.414,1.732)21(6分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示 分组频数4.0x4.224.2x4.434.4x4.654.6x4.884.8x5.0175.0x5.25(1)求活动所抽取的学生人数
8、;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果22(8分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、(1)求反比例函数和一次函数的解析式;(2)请连结,并求出的面积;(3)直接写出当时,的解集23(8分)(1)(问题发现)小明遇到这样一个问题:如图1,ABC是等边三角形,点D为BC的中点,且满足ADE=60,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系(1)小明发现,过点D作DF/AC,交
9、AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出ABC与ADE的面积之比24(10分)已知:如图,点A,F,C,D在同一直线上,AF=DC,ABDE,AB=DE,连接BC,BF,CE求证:四边形BCEF是平行四边形25(10分)2019年8月山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态太
10、职学院足球场作为一个重要比赛场馆占地面积约24300平方米总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了结来比原计划提前4天完成安装任务求原计划每天安装多少个座位26(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE; (2)求CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC=120时,连接CE,试探究线段AP与线段CE的数量关系,
11、并说明理由27(12分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整)请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据 ,可以估算出位于哪两个整数之间,从而可以解答本题【详解】解: 即故选:C【点
12、睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法2、D【解析】连接AC、CF,根据正方形性质求出AC、CF,ACD=GCF=45,再求出ACF=90,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长.【详解】如图,连接AC、CF,正方形ABCD和正方形CEFG中,BC=1,CE=3,AC= ,CF=3,ACD=GCF=45,ACF=90,由勾股定理得,AF=,CHAF,即,CH=.故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键3、C【解析】分析:在实际生活中,许多比较大的数,我
13、们习惯上都用科学记数法表示,使书写、计算简便解答:解:根据题意:2500000=2.51故选C4、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根5、B【解析】试题分析:“960万”用科学记数法表示为9.6106,故选B考点:科学记数法表示较大的数6、B【解析】由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1
14、,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意所以n只能为1故选B7、D【解析】根据多边形的外角和等于360,与边数无关即可解答.【详解】多边形的外角和等于360,与边数无关,一个多边形的边数由3增加到n时,其外角度数的和还是360,保持不变故选D【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360是解题的关键.8、A【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】390000000
15、00=3.91故选A【点睛】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数9、B【解析】|3|=3,|=,|0|=0,|2|=2,|1|=1,3210,绝对值最小的数是0,故选:B10、A【解析】连接AM,根据等腰三角形三线合一的性质得到AMBC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长【详解】解:连接AM,AB=AC,点M为BC中点,AMCM(三线合一),BM=CM,AB=AC=5,BC=6,BM=CM
16、=3,在RtABM中,AB=5,BM=3,根据勾股定理得:AM= = =4,又SAMC=MNAC=AMMC,MN= = 故选A【点睛】综合运用等腰三角形的三线合一,勾股定理特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边11、A【解析】圆柱体的底面积为:()2,矿石的体积为:()2h= .故答案为.12、C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数所以本
17、题这组数据的中位数是1,众数是1故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、y【解析】把交点坐标代入两个解析式组成方程组,解方程组求得k,即可求得反比例函数的解析式【详解】解:反比例函数y的图象与一次函数yx+k的图象有一个交点为(m,4),解得k5,反比例函数的表达式为y,故答案为y【点睛】本题考查了反比例函数与一次函数的交点问题,根据图象上点的坐标特征得出方程组是解题的关键14、【解析】先将分式进行通分,即可进行运算.【详解】=-=【点睛】此题主要考查分式的加减,解题的关键是先将它们通分.15、-【解析】根据二次根式的运算法则即可求出答案【详解】原式=2.故答案为-.
18、【点睛】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型16、4或4.【解析】当AFAD时,由折叠的性质得到AE=AE=2,AF=AF,FAE=A=90,过E作EHMN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到AH=,根据勾股定理列方程即可得到结论;当AFAD时,由折叠的性质得到AE=AE=2,AF=AF,FAE=A=90,过A作HGBC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论【详解】当AFAD时,如图1,将AEF沿EF折叠,当折叠后点A的对应点A恰好落在BC的垂直平分线上,则AE=AE=2,
19、AF=AF,FAE=A=90,设MN是BC的垂直平分线,则AM=AD=3,过E作EHMN于H,则四边形AEHM是矩形, MH=AE=2,AH=,AM=,MF2+AM2=AF2,(3-AF)2+()2=AF2,AF=2,EF=4;当AFAD时,如图2,将AEF沿EF折叠,当折叠后点A的对应点A恰好落在BC的垂直平分线上,则AE=AE=2,AF=AF,FAE=A=90,设MN是BC的垂直平分线,过A作HGBC交AB于G,交CD于H,则四边形AGHD是矩形,DH=AG,HG=AD=6,AH=AG=HG=3,EG=,DH=AG=AE+EG=3,AF=6,EF=4,综上所述,折痕EF的长为4或4,故答案
20、为:4或4【点睛】本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键17、4【解析】已知弧长即已知围成的圆锥的底面半径的长是6cm,这样就求出底面圆的半径扇形的半径为5cm就是圆锥的母线长是5cm就可以根据勾股定理求出圆锥的高【详解】设底面圆的半径是r,则2r=6,r=3cm,圆锥的高=4cm故答案为4.18、(,)或(,)【解析】分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得【详解】如图,当点A、B、C的对应点在第一象限时,由位似比为1:2知点A(0,)、B(,0)、C(,),该正方形的中心点的P的坐标为(,);当点
21、A、B、C的对应点在第三象限时,由位似比为1:2知点A(0,-)、B(-,0)、C(-,-),此时新正方形的中心点Q的坐标为(-,-),故答案为(,)或(-,-)【点睛】本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、见解析【解析】分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.(2)分两种情况进行讨论即可.(3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形
22、时,当四边形AMON为平行四边形时,三种情况进行讨论.详解:(1)易证,得, OC=2,C(0,2),抛物线过点A(-1,0),B(4,0)因此可设抛物线的解析式为 将C点(0,2)代入得:,即 抛物线的解析式为 (2)如图2,当时,则P1(,2),当 时, OCl,,P2HOC5,P2 (,5)因此P点的坐标为(,2)或(,5).(3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.如图3,当平行四边形是平行四边形时,M(,),(,),当平行四边形AONM是平行四边形时,M(,),N(,),如图4,当四边形AMON为平行四边形时,MN与OA互相
23、平分,此时可设M(,m),则 点N在抛物线上,-m-(-+1)( -4)=-,m=,此时M(,), N(-,-).综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.20、33层【解析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD和CE的长,二者的和乘以100后除以20即可确定台阶的数【详解】解:在RtABD中,BD=ABsin45=3m,在RtBEC中,EC=BC=3m,BD+CE=3+3,改造后每层台阶的高为22cm,改造
24、后的台阶有(3+3)1002233(个)答:改造后的台阶有33个【点睛】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质21、(1)所抽取的学生人数为40人(2)37.5%(3)视力x4.4之间活动前有9人,活动后只有5人,人数明显减少活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【解析】【分析】(1)求出频数之和即可;(2)根据合格率=合格人数总人数100%即可得解;(3)从两个不同的角度分析即可,答案不唯一.【详解】(1)频数之和=3+6+7+9+
25、10+5=40,所抽取的学生人数为40人;(2)活动前该校学生的视力达标率=100%=37.5%;(3)视力x4.4之间活动前有9人,活动后只有5人,人数明显减少;活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.22、(1),;(2)4;(3)【解析】(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;(2)依据OB=2,点A的横坐标为-4,即可得到AOB的面积为:24=4;(3)依据数形
26、结合思想,可得当x1时,k1x+b1的解集为:-4x1【详解】解:(1)如图,连接,C与轴,轴相切于点D,且半径为,四边形是正方形,点,把点代入反比例函数中,解得:,反比例函数解析式为:,点在反比例函数上,把代入中,可得,把点和分别代入一次函数中,得出:,解得:,一次函数的表达式为:;(2)如图,连接,点的横坐标为,的面积为:;(3)由,根据图象可知:当时,的解集为:【点睛】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标23、(1)AD=DE;(2)AD=DE,证明见解析;(3)【解析】试题分析:本题难度中等主要考查学生对探究例子中的信息进行归纳总
27、结并能够结合三角形的性质是解题关键试题解析:(10分)(1)AD=DE(2)AD=DE证明:如图2,过点D作DF/AC,交AC于点F,ABC是等边三角形,AB=BC,B=ACB=ABC=60又DF/AC,BDF=BFD=60BDF是等边三角形,BF=BD,BFD=60,AF=CD,AFD=120EC是外角的平分线,DCE=120=AFDADC是ABD的外角,ADC=B+FAD=60+FADADC=ADE+EDC=60+EDC,FAD=EDCAFDDCE(ASA),AD=DE;(3)考点:1等边三角形探究题;2全等三角形的判定与性质;3等边三角形的判定与性质24、证明见解析【解析】首先证明ABC
28、DEF(ASA),进而得出BC=EF,BCEF,进而得出答案【详解】ABDE,A=D,AF=CD,AC=DF,在ABC和DEF中,ABCDEF,BC=EF,ACB=DFE,BCEF,四边形BCEF是平行四边形【点睛】本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.25、原计划每天安装100个座位【解析】根据题意先设原计划每天安装x个座位,列出方程再求解.【详解】解:设原计划每天安装个座位,采用新技术后每天安装个座位, 由题意得: 解得: 经检验:是原方程的解 答:原计划每天安装100个座位【点睛】此题重点考查学生对分式方程的实
29、际应用,掌握分式方程的解法是解题的关键.26、(1)证明见解析(2)90(3)AP=CE【解析】(1)、根据正方形得出AB=BC,ABP=CBP=45,结合PB=PB得出ABP CBP,从而得出结论;(2)、根据全等得出BAP=BCP,DAP=DCP,根据PA=PE得出DAP=E,即DCP=E,易得答案;(3)、首先证明ABP和CBP全等,然后得出PA=PC,BAP=BCP,然后得出DCP=E,从而得出CPF=EDF=60,然后得出EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,ABP=CBP=45,在ABP和CBP中,又 PB=PB ABP CBP(S
30、AS), PA=PC,PA=PE,PC=PE;(2)、由(1)知,ABPCBP,BAP=BCP,DAP=DCP,PA=PE, DAP=E, DCP=E, CFP=EFD(对顶角相等),180PFCPCF=180DFEE, 即CPF=EDF=90; (3)、APCE 理由是:在菱形ABCD中,AB=BC,ABP=CBP,在ABP和CBP中, 又 PB=PB ABPCBP(SAS),PA=PC,BAP=DCP,PA=PE,PC=PE,DAP=DCP, PA=PC DAP=E, DCP=ECFP=EFD(对顶角相等), 180PFCPCF=180DFEE,即CPF=EDF=180ADC=180120
31、=60, EPC是等边三角形,PC=CE,AP=CE考点:三角形全等的证明27、(1)见解析;(2)1;(3)估计全校达标的学生有10人【解析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数不合格人数的百分比,继而求出成绩优秀的人数(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200成绩达标的学生所占的百分比【详解】解:(1)成绩一般的学生占的百分比=120%50%=30%,测试的学生总数=2420%=120人,成绩优秀的人数=12050%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1(3)1200(50%+30%)=10(人)答:估计全校达标的学生有10人