河北省石家庄市深泽县达标名校2023届中考试题猜想数学试卷含解析.doc

上传人:lil****205 文档编号:88311473 上传时间:2023-04-25 格式:DOC 页数:23 大小:1.37MB
返回 下载 相关 举报
河北省石家庄市深泽县达标名校2023届中考试题猜想数学试卷含解析.doc_第1页
第1页 / 共23页
河北省石家庄市深泽县达标名校2023届中考试题猜想数学试卷含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《河北省石家庄市深泽县达标名校2023届中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省石家庄市深泽县达标名校2023届中考试题猜想数学试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果,那么代数式的值是( )A6B2C-2D-62在下列四个标志中,既是中心对称又是轴对称图形的是()ABCD3我国古代数学著作孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五

2、,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )ABCD4如图,在ABC中,ABC=90,AB=8,BC=1若DE是ABC的中位线,延长DE交ABC的外角ACM的平分线于点F,则线段DF的长为( )A7B8C9D105下列计算正确的是()A2a2a21B(ab)2ab2Ca2+a3a5D(a2)3a66如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s

3、若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y与t的函数图象如图2,则下列结论错误的是( )AAE=6cmBC当0t10时,D当t=12s时,PBQ是等腰三角形7如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,ABC=90,CAx轴,点C在函数y=(x0)的图象上,若AB=2,则k的值为()A4B2C2D8cos30的值为( )A1BCD9某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A B C D10A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%

4、,而从A地到B地的时间缩短了1h若设原来的平均车速为xkm/h,则根据题意可列方程为ABCD11钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )ABCD12估计2的运算结果在哪两个整数之间()A0和1B1和2C2和3D3和4二、填空题:(本大题共6个小题,每小题4分,共24分)13如图所示,四边形ABCD中,对角线AC、BD交于点E,且,若,则CE的长为_14实数,3,0中的无理数是_15如图,AB是O的直径,AB=2,点C在O上,CAB=30,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为_ 162011年,我国汽车销量超过了1850

5、0000辆,这个数据用科学记数法表示为 辆17计算(x4)2的结果等于_18已知,则=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,抛物线y=x11x3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMN

6、Q的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由20(6分)在中,是边的中线,于,连结,点在射线上(与,不重合)(1)如果如图1, 如图2,点在线段上,连结,将线段绕点逆时针旋转,得到线段,连结,补全图2猜想、之间的数量关系,并证明你的结论;(2)如图3,若点在线段 的延长线上,且,连结,将线段绕点逆时针旋转得到线段,连结,请直接写出、三者的数量关系(不需证明)21(6分)正方形ABCD中,点P为直线AB

7、上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为 ;题探究:(2)当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为 ;当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=,DEM=15,则DM= 22(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x

8、(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值23(8分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么1与2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的1与2的关系成立吗?请说明理由24(10分)某汽车专卖店销售A,B两种型号的汽车上周销售额为96万元:本周销售额为62万元,销售情况如下

9、表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?25(10分)如图,在平面直角坐标系xOy中,直线yx+b与双曲线y相交于A,B两点,已知A(2,5)求:b和k的值;OAB的面积26(12分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得

10、的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.27(12分)甲班有45人,乙班有39人现在需要从甲、乙班各抽调一些同学去参加歌咏比赛如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍请问从甲、乙两班各抽调了多少参加歌咏

11、比赛?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】3a2+5a-1=0,3a2+5a=1,5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2、C【解析】根据轴对称图形与中心对称图形的概念对各选项分析判断

12、利用排除法求解【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合3、A【解析】本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此列方程组即可求解【详解】设绳子长x尺,木条长y尺,依题意有故选A【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列

13、出相应的二元一次方程组4、B【解析】根据三角形中位线定理求出DE,得到DFBM,再证明EC=EF=AC,由此即可解决问题【详解】在RTABC中,ABC=90,AB=2,BC=1,AC=10,DE是ABC的中位线,DFBM,DE=BC=3,EFC=FCM,FCE=FCM,EFC=ECF,EC=EF=AC=5,DF=DE+EF=3+5=2故选B5、D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2a2a2,故A错误;B、(ab)2a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3a6,故D正确,故选

14、D【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键6、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=ADED=BCED=104=6cm(2)结论B正确,理由如下:如图,连接EC,过点E作EFBC于点F,由函数图象可知,BC=BE=10cm,EF=1(3)结论C正确,理由如下:如图,过点P作PGBQ于点G,BQ=BP=t,(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC此时AN=1,ND=2,由勾股定理求得:NB=,NC=BC=10,BCN不

15、是等腰三角形,即此时PBQ不是等腰三角形故选D7、A【解析】【分析】作BDAC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用ACx轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值【详解】作BDAC于D,如图,ABC为等腰直角三角形,AC=AB=2,BD=AD=CD=,ACx轴,C(,2),把C(,2)代入y=得k=2=4,故选A【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.8、D【解析】cos30

16、=故选D9、B【解析】从几何体的正面看可得下图,故选B10、A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:=1故选A【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键11、A【解析】根据轴对称图形的概念求解解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A“点睛”本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合12、D【解析】先估算出的大致范围,然后再计算出2的大

17、小,从而得到问题的答案【详解】253231,51原式=22=2,322故选D【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】此题有等腰三角形,所以可作BHCD,交EC于点G,利用三线合一性质及邻补角互补可得BGD=120,根据四边形内角和360,得到ABG+ADG=180此时再延长GB至K,使AK=AG,构造出等边AGK易证ABKADG,从而说明ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在RtDBH中利用勾股定理及三角函数知识得到EBG的正

18、切值,然后作EFBG,求出EF,在RtEFG中解出EG长度,最后CE=CG+GE求解【详解】如图,作于H,交AC于点G,连接DG,BH垂直平分CD,延长GB至K,连接AK使,则是等边三角形,又,(),是等边三角形,设,则,在中,解得,当时,所以,作,设,则,故答案为【点睛】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键14、【解析】无理数包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数,根据以上内容判断即可【详解】解:4,是有理数,3、0都是有理数,是无理数故答案为:【点睛】本题考查了对无理数的定义的理解和

19、运用,注意:无理数是指无限不循环小数,包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数15、【解析】作出D关于AB的对称点D,则PC+PD的最小值就是CD的长度,在COD中根据边角关系即可求解.【详解】解:如图:作出D关于AB的对称点D,连接OC,OD,CD.又点C在O上,CAB=30,D为弧BC的中点,即,BAD=CAB=15.CAD=45.COD=90.则COD是等腰直角三角形.OC=OD=AB=1,故答案为:.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.16、2.852【解析】根据科学记数法的定义,科学记数法的表示形式为a20n,其中

20、2|a|20,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于2还是小于2当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,n为它第一个有效数字前0的个数(含小数点前的2个0)【详解】解:28500000一共8位,从而28500000=2.85217、x1【解析】分析:直接利用幂的乘方运算法则计算得出答案详解:(x4)2=x42=x1 故答案为x1点睛:本题主要考查了幂的乘方运算,正确掌握运算法则是解题的关键18、【解析】由可知值,再将化为的形式进行求解即可.【详解】解:,原式=.【点睛】本题考查了分式的化简求值.三、解答题:(本大题共9个小题,共78

21、分,解答应写出文字说明、证明过程或演算步骤19、(1)y=x1;(1)ACE的面积最大值为;(3)M(1,1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(3,0),F3(4+,0),F4(4,0)【解析】(1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;(1)设P点的横坐标为x(-1x1),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出ACE的面积最大值;(3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的

22、解析式为y=-1x+1,进而求出最小值和点M,N的坐标;(4)结合图形,分两类进行讨论,CF平行x轴,如图1,此时可以求出F点两个坐标;CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标【详解】解:(1)令y=0,解得或x1=3,A(1,0),B(3,0);将C点的横坐标x=1代入y=x11x3得 C(1,-3),直线AC的函数解析式是 (1)设P点的横坐标为x(1x1),则P、E的坐标分别为:P(x,x1),E(x,x11x3),P点在E点的上方, 当时,PE的最大值ACE的面积最大值 (3)D点关于PE的对称点为点C(1,3),点Q(0,1)点关于x轴的对称点为K(0,1),连接CK

23、交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,最小值求得M(1,1),(4)存在如图1,若AFCH,此时的D和H点重合,CD=1,则AF=1,于是可得F1(1,0),F1(3,0),如图1,根据点A和F的坐标中点和点C和点H的坐标中点相同,再根据|HA|=|CF|,求出 综上所述,满足条件的F点坐标为F1(1,0),F1(3,0),【点睛】属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.20、(1)60;理由见解析;(2),理由见解析.【解析】(1)根据直角三角形斜

24、边中线的性质,结合,只要证明是等边三角形即可;根据全等三角形的判定推出,根据全等的性质得出,(2)如图2,求出,求出,根据全等三角形的判定得出,求出,推出,解直角三角形求出即可【详解】解:(1),是等边三角形,故答案为60.如图1,结论:理由如下:,是的中点,线段绕点逆时针旋转得到线段,在和中,(2)结论:理由:,是的中点,线段绕点逆时针旋转得到线段,在和中,而,在中,即【点睛】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出是解此题的关键,综合性比较强,证明过程类似21、 (1) DM=AD+AP ;(2) DM=ADAP ; DM=APAD ;(

25、3) 3或1【解析】(1)根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;(2)根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;根据正方形的性质和全等三角形的判定和性质得出ADPPFN,进而解答即可;(3)分两种情况利用勾股定理和三角函数解答即可【详解】(1)DM=AD+AP,理由如下:正方形ABCD,DC=AB,DAP=90,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,DP=PE,PNE=90,DPE=90,ADP+DPA=90,DPA+EPN=90,DAP=EPN,在ADP与NPE中,ADPNP

26、E(AAS),AD=PN,AP=EN,AN=DM=AP+PN=AD+AP;(2)DM=ADAP,理由如下:正方形ABCD,DC=AB,DAP=90,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,DP=PE,PNE=90,DPE=90,ADP+DPA=90,DPA+EPN=90,DAP=EPN,在ADP与NPE中,ADPNPE(AAS),AD=PN,AP=EN,AN=DM=PNAP=ADAP;DM=APAD,理由如下:DAP+EPN=90,EPN+PEN=90,DAP=PEN,又A=PNE=90,DP=PE,DAPPEN,AD=PN,DM=AN=AP

27、PN=APAD;(3)有两种情况,如图2,DM=3,如图3,DM=1;如图2:DEM=15,PDA=PDEADE=4515=30,在RtPAD中AP=,AD=3,DM=ADAP=3;如图3:DEM=15,PDA=PDEADE=4515=30,在RtPAD中AP=,AD=APtan30=1,DM=APAD=1故答案为;DM=AD+AP;DM=ADAP;3或1【点睛】此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,分类讨论的数学思想解决问题,判断出ADPPFN是解本题的关键22、(1)30;(2)当x3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x

28、的值为3.5或4.3小时【解析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:30027030千米;(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题【详解】解:(1)根据图象信息:货车的速度V货,轿车到达乙地的时间为货车出发后4.5小时,轿车到达乙地时,货车行驶的路程为:4.560270(千米),此时,货车距乙地的路程为:30027030(千米)所以轿车到达

29、乙地后,货车距乙地30千米故答案为30;(2)设CD段函数解析式为ykx+b(k0)(2.5x4.5)C(2.5,80),D(4.5,300)在其图象上,解得,CD段函数解析式:y110x195(2.5x4.5);易得OA:y60x,解得,当x3.9时,轿车与货车相遇;(3)当x2.5时,y货150,两车相距150807020,由题意60x(110x195)20或110x19560x20,解得x3.5或4.3小时答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时【点睛】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中

30、路程速度时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键23、详见解析.【解析】(1)根据全等三角形判定中的“SSS”可得出ADCCBA,由全等的性质得DAC=BCA,可证ADBC,根据平行线的性质得出1=1;(1)(3)和(1)的证法完全一样先证ADCCBA得到DAC=BCA,则DABC,从而1=1【详解】证明:1与1相等在ADC与CBA中,ADCCBA(SSS)DAC=BCADABC1=1图形同理可证,ADCCBA得到DAC=BCA,则DABC,1=124、 (1) A型车售价为18万元,B型车售价为26万元. (2) 方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B

31、型车3辆;方案二花费少.【解析】(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.【详解】解:(1)设A型车售价为x元,B型车售价为y元,则:解得:答:A型车售价为18万元,B型车售价为26万元.(2)设A型车购买m辆,则B型车购买(6m)辆, 13018m+26(6m) 140,:2m方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少【点睛】此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.25、(1)b=3,k=10;(2)SAOB=【解析】(1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,

32、5),即可得到结论;(2)过A作ADx轴于D,BEx轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0)求出OC=3,然后根据三角形的面积公式即可得到结论.解:()把代入把代入,(),时,又, 26、(1),见解析;(2)125人;(3)【解析】(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;(3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解【

33、详解】(1)解:(1)n=20-1-3-8-5=3;强化训练前的中位数,强化训练后的平均分为(16+37+88+95+103)=8.3;强化训练后的众数为8,故答案为3;7.5;8.3;8;(2)(人)(3)(3)画树状图为:共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,所以所抽取的两名同学恰好是一男一女的概率P=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率也考查了统计图27、从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x1)人,根据题意列出一元一次方程,从而得出答案详解:设从甲班抽调了x人,那么从乙班抽调了(x1)人, 由题意得,45x=239(x1), 解得:x=35, 则x1=351=1 答:从甲班抽调了35人,从乙班抽调了1人 点睛:本题主要考查的是一元一次方程的应用,属于基础题型理解题目的含义,找出等量关系是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁