《重庆市巴蜀常春藤校2022-2023学年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《重庆市巴蜀常春藤校2022-2023学年中考数学全真模拟试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程x2bxc=0在1x3的范围内有两个相等的实数根,则c的取值范围是( )Ac=4 B5c4 C5c3或c=4 D5c3或c=42(2016福建省莆田市)如图,OP是A
2、OB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定POCPOD的选项是()APCOA,PDOBBOC=ODCOPC=OPDDPC=PD3下列4个数:,()0,其中无理数是()ABCD()04如图,已知ABC,DCE,FEG,HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1连接AI,交FG于点Q,则QI=()A1BCD5如图,四边形ABCD是O的内接四边形,O的半径为6,ADC=60,则劣弧AC的长为()A2B4C5D66下列命题是真命题的是()A一组对边平行,另一组对边相等的四边形是平行四边形B两条对角线相等的四边形是平行四边形C
3、两组对边分别相等的四边形是平行四边形D平行四边形既是中心对称图形,又是轴对称图形7如图,一艘海轮位于灯塔P的南偏东70方向的M处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P的北偏东40的N处,则N处与灯塔P的 距离为A40海里B60海里C70海里D80海里8实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论ab;|b|=|d|;a+c=a;ad0中,正确的有()A4个B3个C2个D1个9在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数
4、法表示为()A485105 B48.5106 C4.85107 D0.48510810某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A80(1+x)2=100B100(1x)2=80C80(1+2x)=100D80(1+x2)=100二、填空题(共7小题,每小题3分,满分21分)11如图, O是ABC的外接圆,AOB=70,AB=AC,则ABC=_.12如图是测量河宽的示意图,AE与BC相交于点D,B=C=90,测得BD=120m,DC=60m,EC=50m,求得河宽AB=_m13如果=k(b+
5、d+f0),且a+c+e=3(b+d+f),那么k=_14在RtABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_15如果把抛物线y=2x21向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_16在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上(1)已知a=1,点B的纵坐标为1如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为_(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =_17对角
6、线互相平分且相等的四边形是()A菱形B矩形C正方形D等腰梯形三、解答题(共7小题,满分69分)18(10分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?19(5分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_,图中m的值是_;求本次调查获取的样本数据的平均数、众数和中位数;根据统
7、计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数20(8分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?21(10分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:(1)利用
8、刻度尺在AOB的两边OA,OB上分别取OMON;(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;(3)画射线OP则射线OP为AOB的平分线请写出小林的画法的依据_22(10分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写
9、出结果即可)23(12分)如图,AD是ABC的中线,过点C作直线CFAD(问题)如图,过点D作直线DGAB交直线CF于点E,连结AE,求证:ABDE(探究)如图,在线段AD上任取一点P,过点P作直线PGAB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明(应用)在探究的条件下,设PE交AC于点M若点P是AD的中点,且APM的面积为1,直接写出四边形ABPE的面积24(14分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价参考答
10、案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】解:由对称轴x=2可知:b=4,抛物线y=x24x+c,令x=1时,y=c+5,x=3时,y=c3,关于x的一元二次方程x2bxc=0在1x3的范围有实数根,当=0时,即c=4,此时x=2,满足题意当0时,(c+5)(c3)0,5c3,当c=5时,此时方程为:x2+4x+5=0,解得:x=1或x=5不满足题意,当c=3时,此时方程为:x2+4x3=0,解得:x=1或x=3此时满足题意,故5c3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.2、D【解析
11、】试题分析:对于A,由PCOA,PDOB得出PCO=PDO=90,根据AAS判定定理可以判定POCPOD;对于B OC=OD,根据SAS判定定理可以判定POCPOD;对于C,OPC=OPD,根据ASA判定定理可以判定POCPOD;,对于D,PC=PD,无法判定POCPOD,故选D考点:角平分线的性质;全等三角形的判定3、C【解析】=3,是无限循环小数,是无限不循环小数,所以是无理数,故选C4、D【解析】解:ABC、DCE、FEG是三个全等的等腰三角形,HI=AB=2,GI=BC=1,BI=2BC=2,=,=ABI=ABC,ABICBA,=AB=AC,AI=BI=2ACB=FGE,ACFG,=,
12、QI=AI=故选D点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解ABCDEF,ACDEFG是解题的关键5、B【解析】连接OA、OC,然后根据圆周角定理求得AOC的度数,最后根据弧长公式求解【详解】连接OA、OC,ADC=60,AOC=2ADC=120,则劣弧AC的长为: =4故选B【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式 6、C【解析】根据平行四边形的五种判定定理(平行四边形的判定方法:两组对边分别平行的四边形;两组对角分别相等的四边形;两组对边分别相等的四边形;一组对边平行且相等的四边形;对角线互相平分的四边形)和平行四边形的性质进行判断
13、【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形故本选项错误;C、两组对边分别相等的四边形是平行四边形故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形故本选项错误;故选:C【点睛】考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法7、D【解析】分析:依题意,知MN40海里/小时2小时80海里,根据方向角的意义和平行的性质,M70,N40,根据三角形内角和定理得MPN70MMPN70NPNM80海里故选D8、B【解析】根据数轴上的点表示
14、的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,ab,故正确;|b|=|d|,故正确;a+c=a,故正确;ad0,故错误;故选B【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键9、C【解析】依据科学记数法的含义即可判断.【详解】解:48511111=4.85117,故本题选择C.【点睛】把一个数M记成a11n(1|a|11,n为整数)的形式,这种记数的方法叫做科学记数法规律:(1)当|a|1时,n的值为a的整数位数减1;(2)当|a|1时,n的值是第一个不是1的
15、数字前1的个数,包括整数位上的110、A【解析】利用增长后的量=增长前的量(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A【点睛】本题考查了一元二次方程的应用(增长率问题)解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程二、填空题(共7小题,每小题3分,满分21分
16、)11、35【解析】试题分析:AOB=70,C=AOB=35AB=AC,ABC=C=35故答案为35考点:圆周角定理12、1【解析】由两角对应相等可得BADCED,利用对应边成比例即可得两岸间的大致距离AB的长【详解】解:ADB=EDC,ABC=ECD=90,ABDECD,即 ,解得:AB= =1(米)故答案为1【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例13、3【解析】=k,a=bk,c=dk,e=fk,a+c+e=bk+dk+fk=k(a+b+c),a+c+e=3(b+d+f),k=3,故答案为:3.14、1【解析】解:如图在
17、RtABC中(C=90),放置边长分别2,3,x的三个正方形,CEFOMEPFN,OE:PN=OM:PFEF=x,MO=2,PN=3,OE=x2,PF=x3,(x2):3=2:(x3),x=0(不符合题意,舍去),x=1故答案为1点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键15、y=2(x+1)2+1【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+116、4 【解析】解:(1)当a
18、=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,x=,B在第一象限,A(,1),B(,1),AB=1,向右平移抛物线L使该抛物线过点B,AB=BC=1,AC=4;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BKx轴于K,设OK=t,则AB=BC=1t,B(t,at1),根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,O(0,0),G(4t,0),设抛物线L3的解析式为:y=a3(x0)(x4t),y=a3x(x4t),该抛物线过点B(t,at1),at1=a3t(t4t),t0,a=3a3,=,故答案为(1)4;(1)点睛:本题考查二次函数的图象和
19、性质.熟练掌握二次函数的性质是解题的关键.17、B【解析】根据平行四边形的判定与矩形的判定定理,即可求得答案【详解】对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线相等且互相平分的四边形一定是矩形故选B【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理此题比较简单,解题的关键是熟记定理三、解答题(共7小题,满分69分)18、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】设年平均增长率为x,根据:2016年投入资金(1+增长率)2=2018年投入资金,列出方程求解可得.【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题
20、意得:1280(1+x)2=1280+1600.解得x1=0.5=50%,x2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键19、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大
21、小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.20、(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解析】(
22、1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100m)6000,解得:m1,m是整数,m最大可取1答:这所中学最多可以购买篮球1个【点睛】本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般21、斜边和一条直角边分别相
23、等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【解析】利用“HL”判断RtOPMRtOPN,从而得到POM=PON【详解】有画法得OMON,OMPONP90,则可判定RtOPMRtOPN,所以POMPON,即射线OP为AOB的平分线故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【点睛】本题考查了作图基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.22、()点P的坐标为(,1)()(0t11)()点P的坐标为(,1)或(,1)【解析】()根据题意得,OBP=90,OB=1,在RtOBP中,由BOP=30,BP=t,得
24、OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,QCPQCP,易证得OBPPCQ,然后由相似三角形的对应边成比例,即可求得答案()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与,即可求得t的值:【详解】()根据题意,OBP=90,OB=1在RtOBP中,由BOP=30,BP=t,得OP=2tOP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=(舍去)点P的坐标为(,1)()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP
25、,QCPQCPOPB=OPB,QPC=QPCOPB+OPB+QPC+QPC=180,OPB+QPC=90BOP+OPB=90,BOP=CPQ又OBP=C=90,OBPPCQ由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11t,CQ=1m(0t11)()点P的坐标为(,1)或(,1)过点P作PEOA于E,PEA=QAC=90PCE+EPC=90PCE+QCA=90,EPC=QCAPCECQAPC=PC=11t,PE=OB=1,AQ=m,CQ=CQ=1m,即,即将代入,并化简,得解得:点P的坐标为(,1)或(,1)23、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见
26、解析;【应用】:8.【解析】(1)先根据平行线的性质和等量代换得出13,再利用中线性质得到BDDC,证明ABDEDC,从而证明ABDE(2)方法一:过点D作DNPE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明ABPEPN,从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.【详解】证明:如图 是的中线,(或证明四边形ABDE是平行四边形,从而得到)【探究】四边形ABPE是平行四边形方法一:如图,证明:过点D作交直线于
27、点,四边形是平行四边形,由问题结论可得四边形是平行四边形方法二:如图,证明:延长BP交直线CF于点N,是的中线,四边形是平行四边形【应用】如图,延长BP交CF于H由上面可知,四边形是平行四边形,四边形APHE是平行四边形,【点睛】此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.24、足球单价是60元,篮球单价是90元【解析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.560=90,答:足球单价是60元,篮球单价是90元【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验