石家庄市第一中学2023年高三3月份模拟考试数学试题含解析.doc

上传人:茅**** 文档编号:88311385 上传时间:2023-04-25 格式:DOC 页数:21 大小:2.23MB
返回 下载 相关 举报
石家庄市第一中学2023年高三3月份模拟考试数学试题含解析.doc_第1页
第1页 / 共21页
石家庄市第一中学2023年高三3月份模拟考试数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《石家庄市第一中学2023年高三3月份模拟考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《石家庄市第一中学2023年高三3月份模拟考试数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1已知的内角、的对边分别为、,且,为边上的中线,若,则的面积为( )ABCD2设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )ABCD3过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是( )ABCD4设复数满足,在复平面内对应的点为,则( )ABCD5已知函数,则下列结论错误的是( )A函数的最小正周期为B函数的图象关于点对称C函数在上单调递增D函数的图象可由的图象向左平移个单位长度得到6已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点给出以

3、下判断:以为直径的圆与抛物线准线相离;直线与直线的斜率乘积为;设过点,的圆的圆心坐标为,半径为,则其中,所有正确判断的序号是( )ABCD7已知四棱锥,底面ABCD是边长为1的正方形,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD18已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为( )ABCD49已知,若,则( )ABCD10已知函数的图象如图所示,则可以为( )ABCD11已知边长为4的菱形,为的中点,为平面内一点,若,则( )A16B14C12D812的展开式中的项的系数为( )A120B80C60D40二、填空题:本题共4小题,每小题5分,共20

4、分。13在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.14已知数列的前项和且,设,则的值等于_ .15函数的定义域是 16函数的定义域是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)2019年9月26日,携程网发布2019国庆假期旅游出行趋势预测报告,2018年国庆假日期间,西安共接待游客1692.56万人次,今年国庆有望超过2000万人次,成为西部省份中接待游客量最多的城市.旅游公司规定:若公司某位导游接待旅客,旅游年总收人不低于40(单位:万

5、元),则称该导游为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙家旅游公司各有导游40名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:分组频数(1)求的值,并比较甲、乙两家旅游公司,哪家的影响度高?(2)从甲、乙两家公司旅游总收人在(单位:万元)的导游中,随机抽取3人进行业务培训,设来自甲公司的人数为,求的分布列及数学期望.18(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)19(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.20(12分)已知集合,集合

6、.(1)求集合;(2)若,求实数的取值范围.21(12分)在平面直角坐标系中,已知向量,其中.(1)求的值;(2)若,且,求的值.22(10分)已知函数,其中.(1)函数在处的切线与直线垂直,求实数的值;(2)若函数在定义域上有两个极值点,且.求实数的取值范围;求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公

7、式的应用,其中根据中线作出平行四边形是关键,是中档题.2、B【解析】由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,所以为等边三角形,两渐近线的斜率分别为和.故选:B【点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.3、D【解析】如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.

8、故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.4、B【解析】设,根据复数的几何意义得到、的关系式,即可得解;【详解】解:设,解得.故选:B【点睛】本题考查复数的几何意义的应用,属于基础题.5、D【解析】由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,所以B正确;当时,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.6、

9、D【解析】对于,利用抛物线的定义,利用可判断;对于,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于,将代入抛物线的方程可得,从而,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点设,到准线的距离分别为,的半径为,点到准线的距离为,显然,三点不共线,则所以正确由题意可设直线的方程为,代入抛物线的方程,有设点,的坐标分别为,则,所以则直线与直线的斜率乘积为所以正确将代入抛物线的方程可得,从而,根据抛物线的对称性可知,两点关于轴对称,所以过点,的圆的圆心

10、在轴上由上,有,则所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以于是,代入,得,所以所以正确故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.7、B【解析】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE

11、的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.8、D【解析】如图所示:过点作垂直准线于,交轴于,则,设,则,利用均值不等式得到答案.【详解】如图所示:过点作垂直准线于,交轴于,则,设,则,当,即时等号成立.故选:.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.9、B【解析】由平行求出参数,再由数量积的坐标运算

12、计算【详解】由,得,则,所以故选:B【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键10、A【解析】根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.故选:A【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题11、B【解析】取

13、中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,即.,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.12、A【解析】化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、(1),;(2),.【解析】(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次

14、函数最值的问题,即可求得.【详解】(1)直线的普通方程为.在曲线的参数方程中,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,所以点到直线的距离的最小值为.此时点的坐标为.【点睛】本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.14、7【解析】根据题意,当时,可得,进而得数列为等比数列,再计算可得,进而可得结论.【详解】由题意,当时,又,解得,当时,由,所以,即,故数列是以为首项,为公比的等比数列,故,又,所以,.故答案为:.【点睛】本题考查了数列递推关系、函数求值,考查了推理能力与计算能力,计算得是解决本题的关键,属于中档题.15、【解析】解:因为,故定

15、义域为16、【解析】由于偶次根式中被开方数非负,对数的真数要大于零,然后解不等式组可得答案.【详解】解:由题意得,解得,所以,故答案为:【点睛】此题考查函数定义域的求法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),乙公司影响度高;(2)见解析,【解析】(1)利用各小矩形的面积和等于1可得a,由导游人数为40人可得b,再由总收人不低于40可计算出优秀率;(2)易得总收入在中甲公司有4人,乙公司有2人,则甲公司的人数的值可能为1,2,3,再计算出相应取值的概率即可.【详解】(1)由直方图知,解得,由频数分布表中知:,解得.所以,甲公司的导游优秀率为:,乙

16、公司的导游优秀率为:,由于,所以乙公司影响度高.(2)甲公司旅游总收入在中的有人,乙公司旅游总收入在中的有2人,故的可能取值为1,2,3,易知:,;.所以的分布列为:123P.【点睛】本题考查频率分布直方图、随机变量的分布列与期望,考查学生数据处理与数学运算的能力,是一道中档题.18、(1);(2)证明见解析.【解析】(1)求出函数的定义域为,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.【详解】(1)函数的定义域为

17、,且.当时,对任意的,此时函数在上为增函数,函数为最大值;当时,令,得.当时,此时函数单调递增;当时,此时函数单调递减.所以,函数在处取得极大值,亦即最大值,即,解得.综上所述,实数的取值范围是;(2)当时,定义域为,当时,;当时,.所以,函数的单调递增区间为,单调递减区间为.由于函数有两个零点、且,构造函数,其中,令,当时,所以,函数在区间上单调递减,则,则.所以,函数在区间上单调递减,即,即,且,而函数在上为减函数,所以,因此,.【点睛】本题考查利用函数的最值求参数,同时也考查了利用导数证明函数不等式,利用所证不等式的结构构造新函数是解答的关键,考查推理能力与计算能力,属于难题.19、(1

18、)见解析;(2)(,0【解析】(1)利用导数求x0时,f(x)的极大值为,即证(2)等价于k,x0,令g(x),x0,再求函数g(x)的最小值得解.【详解】(1)函数f(x)x2e3x,f(x)2xe3x+3x2e3xx(3x+2)e3x由f(x)0,得x或x0;由f(x)0,得,f(x)在(,)内递增,在(,0)内递减,在(0,+)内递增,f(x)的极大值为,当x0时,f(x)(2)x2e3x(k+3)x+2lnx+1,k,x0,令g(x),x0,则g(x),令h(x)x2(1+3x)e3x+2lnx1,则h(x)在(0,+)上单调递增,且x0+时,h(x),h(1)4e310,存在x0(0

19、,1),使得h(x0)0,当x(0,x0)时,g(x)0,g(x)单调递减,当x(x0,+)时,g(x)0,g(x)单调递增,g(x)在(0,+)上的最小值是g(x0),h(x0)+2lnx01=0,所以,令,令所以=1,,g(x0) 实数k的取值范围是(,0【点睛】本题主要考查利用证明不等式,考查利用导数求最值和解答不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1);(2).【解析】(1)求出函数的定义域,即可求出结论;(2)化简集合,根据确定集合的端点位置,建立的不等量关系,即可求解.【详解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以实

20、数的取值范围为.【点睛】本题考查集合的运算,集合间的关系求参数,考查函数的定义域,属于基础题.21、(1)(2).【解析】(1)根据,由向量,的坐标直接计算即得;(2)先求出,再根据向量平行的坐标关系解得.【详解】(1)由题,向量,则.(2),.,整理得,化简得,即,即.【点睛】本题考查平面向量的坐标运算,以及向量平行,是常考题型.22、(1);(2);详见解析.【解析】(1)由函数在处的切线与直线垂直,即可得,对其求导并表示,代入上述方程即可解得答案;(2)已知要求等价于在上有两个根,且,即在上有两个不相等的根,由二次函数的图象与性质构建不等式组,解得答案,最后分析此时单调性推及极值说明即可

21、;由可知,是方程的两个不等的实根,由韦达定理可表达根与系数的关系,进而用含的式子表示,令,对求导分析单调性,即可知道存在常数使在上单调递减,在上单调递增,进而求最值证明不等式成立.【详解】解:(1)依题意,故,所以,据题意可知,解得.所以实数的值为.(2)因为函数在定义域上有两个极值点,且,所以在上有两个根,且,即在上有两个不相等的根.所以解得.当时,若或,函数在和上单调递增;若,函数在上单调递减,故函数在上有两个极值点,且.所以,实数的取值范围是.由可知,是方程的两个不等的实根,所以其中.故,令,其中.故,令,在上单调递增.由于,所以存在常数,使得,即,且当时,在上单调递减;当时,在上单调递增,所以当时,又,所以,即,故得证.【点睛】本题考查导数的几何意义、两直线的位置关系、由极值点个数求参数范围问题,还考查了利用导数证明不等式成立,属于难题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁