《湖南省长沙市雅礼雨花中学2022-2023学年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省长沙市雅礼雨花中学2022-2023学年中考数学猜题卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A三个视图的面积一样大B主视图的面积最小C左视图的面积最小D俯视图的面积最小2一次函数满足,且随的增大而减小,则此函数的图象不经过( )A第一象限
2、B第二象限C第三象限D第四象限3若a是一元二次方程x2x1=0的一个根,则求代数式a32a+1的值时需用到的数学方法是()A待定系数法 B配方 C降次 D消元4如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()ABCD5如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,
3、可以得到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD6如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()ABCD7我们知道:四边形具有不稳定性如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D处,则点C的对应点C的坐标为()A(,2)B(4,1)C(4,)D(4,)8方程(m2)x2+3mx+1=0是关于x的一元二次方程,则( )Am2Bm=2Cm=2Dm29下列各数是不等式组的解是()A0BC
4、2D310如图,一张半径为的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在中,点D、E分别在边、上,且,如果,那么_12二次根式在实数范围内有意义,x的取值范围是_13菱形ABCD中,A=60,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_14如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加 _条件,可以判定四边形AECF是平行四边形(填一个符合要求的条件即可)15若方程x22x10的两根分别为x1,x2,则x1+x2
5、x1x2的值为_16半径为2的圆中,60的圆心角所对的弧的弧长为_.17一个正多边形的每个内角等于,则它的边数是_三、解答题(共7小题,满分69分)18(10分)如图,在中,以为直径的交于点,过点作于点,且()判断与的位置关系并说明理由;()若,求的半径19(5分)如图所示:ABC是等腰三角形,ABC=90(1)尺规作图:作线段AB的垂直平分线l,垂足为H(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH20(8分)如图,在等边ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60后得到CE,连接AE求证:AEBC21(10分)如图,AB为O
6、直径,过O外的点D作DEOA于点E,射线DC切O于点C、交AB的延长线于点P,连接AC交DE于点F,作CHAB于点H(1)求证:D=2A;(2)若HB=2,cosD=,请求出AC的长22(10分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA,OC 为邻边作矩形 OABC, 动点 M,N 以每秒 1 个单位长度的速度分别从点 A、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NPBC,交 OB 于点 P,连接 MP(1)直接写出点 B 的坐标为 ,直线
7、OB 的函数表达式为 ;(2)记OMP 的面积为 S,求 S 与 t 的函数关系式;并求 t 为何值时,S有最大值,并求出最大值23(12分)4100米拉力赛是学校运动会最精彩的项目之一图中的实线和虚线分别是初三一班和初三二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计)问题:(1)初三二班跑得最快的是第 接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?24(14分)如图,ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点
8、到端点时,另一个动点也相应停止运动,设运动的时间为t用含t的代数式表示:AP= ,AQ= 当以A,P,Q为顶点的三角形与ABC相似时,求运动时间是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.故选C考点:三视图2、A【解析】试题分析:根据y随x的增大而减小得:k0,又kb0,则b0,故此函数的图象经过第二、三、四象限,即不经过第一象限故选A考点:一次函数图象与系数的关系3、C【解析】根据一元二次方程的解的定义即可求出答案【详解】由题意可知:a2-a-
9、1=0,a2-a=1,或a2-1=aa3-2a+1=a3-a-a+1=a(a2-1)-(a-1)=a2-a+1=1+1=2故选:C【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义4、A【解析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P(奇数)= = 故此题选A【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键5、C【解析】根据图象起始位置猜想点B或F为起点,则可以判断正确,错误结合图象判断3t4图象的对称性可以判断正确结合图象易得正确【详
10、解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故正确;所有点中,只有点D到A距离为2个单位,故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势6、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无
11、理数的大小,解决本题的关键是估计的大小.7、D【解析】由已知条件得到AD=AD=4,AO=AB=2,根据勾股定理得到OD= =2,于是得到结论【详解】解:AD=AD=4,AO=AB=1,OD=2,CD=4,CDAB,C(4,2),故选:D【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键8、D【解析】试题分析:根据一元二次方程的概念,可知m-20,解得m2.故选D9、D【解析】求出不等式组的解集,判断即可【详解】,由得:x-1,由得:x2,则不等式组的解集为x2,即3是不等式组的解,故选D【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键10、
12、C【解析】这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积【详解】解:如图:正方形的面积是:44=16;扇形BAO的面积是:, 则这张圆形纸片“不能接触到的部分”的面积是41-4=4-,这张圆形纸片“能接触到的部分”的面积是16-(4-)=12+,故选C【点睛】本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据,得出,利用相似三角形的性质解答即可【详解】,即,故答案为:【点睛】本题考查了相似三角形的判定与性质关键是要懂得找相似三角形,利用相似三角形的性质求解12、x1【解析】根
13、据二次根式有意义的条件列出不等式,解不等式即可【详解】解:由题意得,1x0,解得,x1,故答案为x1【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键13、3或6【解析】分成P在OA上和P在OC上两种情况进行讨论,根据ABD是等边三角形,即可求得OA的长度,在直角OBP中利用勾股定理求得OP的长,则AP即可求得【详解】设AC和BE相交于点O当P在OA上时,AB=AD,A=60,ABD是等边三角形,BD=AB=9,OB=OD=BD=则AO=在直角OBP中,OP=则AP=OA-OP-;当P在OC上时,AP=OA+OP=故答案是:3或6【点睛】本题考查了菱形的
14、性质,注意到P在AC上,应分两种情况进行讨论是解题的关键14、BE=DF【解析】可以添加的条件有BE=DF等;证明:四边形ABCD是平行四边形,AB=CD,ABD=CDB;又BE=DF,ABECDF(SAS).AE=CF,AEB=CFD.AEF=CFE.AECF;四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF15、1【解析】根据题意得x1+x2=2,x1x2=1,所以x1+x2x1x2=2(1)=1故答案为116、【解析】根据弧长公式可得:=,故答案为.17、十二【解析】首先根据内角度数计算出外角度数,再用外角和360除以外角度数即可【详解】一个正多边形
15、的每个内角为150,它的外角为30,3603012,故答案为十二【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角三、解答题(共7小题,满分69分)18、(1)DE与O相切,详见解析;(2)5【解析】(1) 根据直径所对的圆心角是直角,再结合所给条件BDEA,可以推导出ODE 90,说明相切的位置关系。(2)根据直径所对的圆心角是直角,并且在BDE中,由DEBC,有BDEDBE 90可以推导出DABC, 可判定ABC是等腰三角形,再根据BDAC可知D是AC的中点,从而得出AD的长度,再在RtADB中计算出直径AB的长,从而算出半径。【详解】(1)连接OD,在O中,因为AB
16、是直径,所以ADB90,即ODAODB90,由OAOD,故AODA,又因为BDEA,所以ODABDE,故ODAODBBDEODBODE90,即ODDE,OD过圆心,D是圆上一点,故DE是O切线上的一段,因此位置关系是直线DE与O相切;(2)由(1)可知,ADB90,故AABD90,故BDAC,由BDEA,则BDEABD90,因为DEBC,所以DEB90,故在BDE中,有BDEDBE90,则ABDDBE,又因为BDAC,即ADBCDB90,所以DABC,故ABC是等腰三角形,BD是等腰ABC底边BC上的高,则D是AC的中点,故ADAC168,在RtABD中,tanA,可解得BD6,由勾股定理可得
17、AB10,AB为直径,所以O的半径是5.【点睛】本题主要考查圆中的计算问题和与圆有关的位置关系,解本题的要点在于求出AD的长,从而求出AB的长.19、 (1)见解析;(2)证明见解析.【解析】(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案【详解】解:(1)如图所示:直线l即为所求;(2)证明:点H是AB的中点,且DHAB,DHBC,点D是AC的中点, AB=2DH.【点睛】考查作图基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.2
18、0、见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,B=ACB=60,根据旋转的性质得出CD=CE,DCE=60,求出BCD=ACE,根据SAS推出BCDACE,根据全等得出EAC=B=60,求出EAC=ACB,根据平行线的判定得出即可.试题解析:ABC是等边三角形,AC=BC,B=ACB=60,线段CD绕点C顺时针旋转60得到CE,CD=CE,DCE=60,DCE=ACB,即BCD+DCA=DCA+ACE,BCD=ACE,在BCD与ACE中,BCDACE,EAC=B=60,EAC=ACB,AEBC.21、(1)证明见解析;(2)AC=4.【解析】(1)连接,根据切线的性质得到,根
19、据垂直的定义得到,得到,然后根据圆周角定理证明即可;(2)设的半径为,根据余弦的定义、勾股定理计算即可【详解】(1)连接射线切于点,由圆周角定理得:,;(2)由(1)可知:,设的半径为,则,在中,由勾股定理可知:,在中,由勾股定理可知:【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键22、(1),;(2),1,1【解析】(1)根据四边形OABC为矩形即可求出点B坐标,设直线OB解析式为,将B代入即可求直线OB的解析式;(2)由题意可得,由(1)可得点的坐标为, 表达出OMP的面积即可,利用二次函数的性质求出最大值【详解】解:(1)
20、OA=6,OC=4, 四边形OABC为矩形,AB=OC=4,点B,设直线OB解析式为,将B代入得,解得,故答案为:;(2)由题可知,由(1)可知,点的坐标为,当时,有最大值1【点睛】本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式23、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列【解析】(1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;(2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可【详解】(1)从函数图象上可看出初三二班跑得最快的是第1接力
21、棒的运动员用了12秒跑完100米;(2)设在图象相交的部分,设一班的直线为y1kx+b,把点(28,200),(40,300)代入得:解得:k,b,即y1x,二班的为y2kx+b,把点(25,200),(41,300),代入得:解得:k,b,即y2x+联立方程组,解得:,所以发令后第37秒两班运动员在275米处第一次并列【点睛】本题考查了利用一次函数的模型解决实际问题的能力和读图能力要先根据题意列出函数关系式,再代数求值解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息要掌握利用函数解析式联立成方程组求交点坐标的方法24、(1)AP=2t,AQ=163t;(2)运动时间为秒或1秒【解析】(1)根据路程=速度时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论(1)当APQABC时;(2)当APQACB时利用相似三角形的性质求解即可【详解】(1)AP=2t,AQ=163t(2)PAQ=BAC,当时,APQABC,即,解得 当时,APQACB,即,解得t=1运动时间为秒或1秒【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.