湖南省长沙市岳麓区长郡梅溪湖2022-2023学年中考数学四模试卷含解析.doc

上传人:lil****205 文档编号:88311236 上传时间:2023-04-25 格式:DOC 页数:17 大小:543.50KB
返回 下载 相关 举报
湖南省长沙市岳麓区长郡梅溪湖2022-2023学年中考数学四模试卷含解析.doc_第1页
第1页 / 共17页
湖南省长沙市岳麓区长郡梅溪湖2022-2023学年中考数学四模试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《湖南省长沙市岳麓区长郡梅溪湖2022-2023学年中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省长沙市岳麓区长郡梅溪湖2022-2023学年中考数学四模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(共10小题,每小题3分,共30分)1甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数如果设甲每小时做x个,那么可列方程为( )ABCD2如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A美B丽C泗D阳3如图,甲从A点出发向北偏东70方向走到点B,乙从点A出发向南偏西15方向走到点C,则BAC的度数是()A85B105C125D1604如图,函数y1=x3与y2=在同一坐标系中的图象如图所示,则当y1y2时()A1xlB0x1或x1C1xI且x0D1x0或x15如图,ADBECF

3、,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB1,BC3,DE2,则EF的长为()A4B.5C6D86 “a是实数,|a|0”这一事件是( )A必然事件B不确定事件C不可能事件D随机事件7孙子算经是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )ABCD8一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2

4、)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确9如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )ABCD10下列手机手势解锁图案中,是轴对称图形的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11若不等式(a3)x1的解集为,则a的取值范围是_12如果抛物线y(k2)x2+k的开口向上,那么k的取值范围是_13方程x+1=的解是_14如图,四边形

5、ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点若四边形EFGH为菱形,则对角线AC、BD应满足条件_15因式分解:_16因式分解:_.三、解答题(共8题,共72分)17(8分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3)求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求ABC的面积18(8分)在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象经过A(0,4),B(2,0),C(-2,0)三点(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次

6、经过点B求平移后图象顶点E的坐标;直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积19(8分)如图,经过原点的抛物线y=x2+2mx(m0)与x轴的另一个交点为A,过点P(1,m)作直线PAx轴于点M,交抛物线于点B记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP(I)当m=3时,求点A的坐标及BC的长;(II)当m1时,连接CA,若CACP,求m的值;(III)过点P作PEPC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标20(8分)如图,在AOB中,ABO=90,OB=1,AB=8,反比例函数y=在第一

7、象限内的图象分别交OA,AB于点C和点D,且BOD的面积SBOD=1求反比例函数解析式;求点C的坐标21(8分)如图,在等腰直角ABC中,C是直角,点A在直线MN上,过点C作CEMN于点E,过点B作BFMN于点F(1)如图1,当C,B两点均在直线MN的上方时,直接写出线段AE,BF与CE的数量关系猜测线段AF,BF与CE的数量关系,不必写出证明过程(2)将等腰直角ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程(3)将等腰直角ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度22(10分)

8、解不等式:123(12分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶点都在格点上,回答下列问题:可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:_;画出绕点B逆时针旋转的图形;在中,点C所形成的路径的长度为_24一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所

9、用时间与乙做 45 个所用时间相等即可列方程.【详解】设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.故选A【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键2、D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键3、C【解析】首先求得AB与正东方向的夹角的度数,即可求解【详解】根据

10、题意得:BAC(9070)+15+90125,故选:C【点睛】本题考查了方向角,正确理解方向角的定义是关键4、B【解析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1)由图象可以直接写出当y1y2时所对应的x的取值范围【详解】根据图象知,一次函数y1=x3与反比例函数y2=的交点是(1,1),(-1,1),当y1y2时,, 0x1的解集为x,不等式两边同时除以(a3)时不等号的方向改变,a30,a3.故答案为a3.点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.12、k2【解析】根据二次函数的性质可知,

11、当抛物线开口向上时,二次项系数k21【详解】因为抛物线y(k2)x2k的开口向上,所以k21,即k2,故答案为k2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型13、x=1【解析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解【详解】两边平方得:(x+1)1=1x+5,即x1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1故答案为x=114、AC=BD【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于

12、AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形试题解析:添加的条件应为:AC=BD证明:E,F,G,H分别是边AB、BC、CD、DA的中点,在ADC中,HG为ADC的中位线,所以HGAC且HG=AC;同理EFAC且EF=AC,同理可得EH=BD,则HGEF且HG=EF,四边形EFGH为平行四边形,又AC=BD,所以EF=EH,四边形EFGH为菱形考点:1菱形的性质;2三角形中位线定理15、【解析】先提取公因式x,再对余下的多项式利用完全

13、平方公式继续分解【详解】解:原式,故答案为:【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.16、【解析】分析:先提公因式,再利用平方差公式因式分解即可详解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案为:(a-b)(a-2)(a+2)点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键三、解答题(共8题,共72分)17、(1)y(x3)25(2)5【解析】(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形

14、面积公式求解【详解】(1)设此抛物线的表达式为ya(x3)25,将点A(1,3)的坐标代入上式,得3a(13)25,解得 此抛物线的表达式为 (2)A(1,3),抛物线的对称轴为直线x3,B(5,3)令x0,则 ABC的面积【点睛】考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.18、(1)yx2+4;(2)E(5,9);1.【解析】(1)待定系数法即可解题,(2)求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;AB扫过的面积是平行四边形ABGE,根据S四边形ABGES矩形IOKHSAOBSAE

15、ISEHGSGBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)A(0,4),B(2,0),C(2,0)二次函数的图象的顶点为A(0,4),设二次函数表达式为yax2+4,将B(2,0)代入,得4a+40,解得,a1,二次函数表达式yx2+4;(2)设直线DA:ykx+b(k0),将A(0,4),D(4,0)代入,得 ,解得, ,直线DA:yx+4,由题意可知,平移后的抛物线的顶点E在直线DA上,设顶点E(m,m+4),平移后的抛物线表达式为y(xm)2+m+4,又平移后的抛物线过点B(2,0),将其代入得,(2m)2+m+40,解

16、得,m15,m20(不合题意,舍去),顶点E(5,9),如图,连接AB,过点B作BLAD交平移后的抛物线于点G,连结EG,四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GKx轴于点K,过点E作EIy轴于点I,直线EI,GK交于点H由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点GB(2,0),点G(7,5),GK5,OB2,OK7,BKOKOB725,A(0,4),E(5,9),AI945,EI5,EH752,HG954,S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK7924552455638251答:图象A,B两点间

17、的部分扫过的面积为1【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.19、(I)4;(II) (III)(2,0)或(0,4)【解析】(I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;(II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如图,利用PMECBP得到P

18、M=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PHy轴于H,如图,利用PHEPBC得到PH=PB=m-1,HE=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE得到E点坐标【详解】解:(I)当m=3时,抛物线解析式为y=x2+6x,当y=0时,x2+6x=0,解得x1=0,x2=6,则A(6,0),抛物线的对称轴为直线x=3,P(1,3),B(1,5),点B关于抛物线对称轴的对称点为CC(5,5),BC=51=4;(II)当y=0时,x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),

19、B(1,2m1),点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,C(2m1,2m1),PCPA,PC2+AC2=PA2,(2m2)2+(m1)2+12+(2m1)2=(2m1)2+m2,整理得2m25m+3=0,解得m1=1,m2=,即m的值为;(III)如图,PEPC,PE=PC,PMECBP,PM=BC=2m2,ME=BP=2m1m=m1,而P(1,m)2m2=m,解得m=2,ME=m1=1,E(2,0);作PHy轴于H,如图,易得PHEPBC,PH=PB=m1,HE=BC=2m2,而P(1,m)m1=1,解得m=2,HE=2m2=2,E(0,4);综上所述,m的值为2,

20、点E的坐标为(2,0)或(0,4)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式20、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)【解析】(1)由SBOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标【详解】(1)ABO=90,OB=1,SBOD=1,OBBD=1,解得BD=2,D(1,2)将D(1,2)代入y=,得

21、2=,k=8,反比例函数解析式为y=;(2)ABO=90,OB=1,AB=8,A点坐标为(1,8),设直线OA的解析式为y=kx,把A(1,8)代入得1k=8,解得k=2,直线AB的解析式为y=2x,解方程组得或,C点坐标为(2,1).21、(1)AE+BF =EC;AF+BF=2CE;(2)AFBF=2CE,证明见解析;(3)FG=【解析】(1)只要证明ACEBCD(AAS),推出AE=BD,CE=CD,推出四边形CEFD为正方形,即可解决问题;利用中结论即可解决问题;(2)首先证明BF-AF=2CE由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FGEC,可知,由此即可解

22、决问题;【详解】解:(1)证明:如图1,过点C做CDBF,交FB的延长线于点D,CEMN,CDBF,CEA=D=90,CEMN,CDBF,BFMN,四边形CEFD为矩形,ECD=90,又ACB=90,ACB-ECB=ECD-ECB,即ACE=BCD,又ABC为等腰直角三角形,AC=BC,在ACE和BCD中,ACEBCD(AAS),AE=BD,CE=CD,又四边形CEFD为矩形,四边形CEFD为正方形,CE=EF=DF=CD,AE+BF=DB+BF=DF=EC由可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE图2中,过点C作CGBF,交BF延长线

23、于点G,AC=BC可得AEC=CGB,ACE=BCG,在CBG和CAE中,CBGCAE(AAS),AE=BG,AF=AE+EF,AF=BG+CE=BF+FG+CE=2CE+BF,AF-BF=2CE;(3)如图3,过点C做CDBF,交FB的于点D,AC=BC可得AEC=CDB,ACE=BCD,在CBD和CAE中,CBDCAE(AAS),AE=BD,AF=AE-EF,AF=BD-CE=BF-FD-CE=BF-2CE,BF-AF=2CEAF=3,BF=7,CE=EF=2,AE=AF+EF=5,FGEC,FG=【点睛】本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比

24、例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、x【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得【详解】2(23x)3(x1)6,46x3x+36,6x3x643,9x1,x【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变23、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)【解析】(1)ABC先沿y轴翻折,再向右平移1个单位,向下平移3个

25、单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到DEF;按照旋转中心、旋转角度以及旋转方向,即可得到ABC绕点B逆时针旋转 的图形 ;依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可【详解】解:(1)答案不唯一例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折(2)分别将点C、A绕点B逆时针旋转得到点 、 ,如图所示,即为所求;(3)点C所形成的路径的长为:故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)【点睛】本题考查坐标与图形变化旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小24、(1)详见解析;(2)【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案试题解析:(1)如图: ,所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2);(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁