《陕西省西安高新逸翠园校2023年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安高新逸翠园校2023年中考数学最后冲刺浓缩精华卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列四个图形中,是中心对称图形的是( )ABCD2如图,三角形纸片ABC,AB10cm,BC7cm,AC6cm,沿过点B
2、的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则AED的周长为()A9cmB13cmC16cmD10cm3有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A方差B中位数C众数D平均数4一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )ABCD5如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BEDF的是()AAECFBBEDFCEBFFDEDBEDBFD62014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,
3、则a、b之间满足的关系式为()ABCD7下列计算正确的是()Aa+a=2aBb3b3=2b3Ca3a=a3D(a5)2=a78下列运算正确的是()Aa2+a3=a5B(a3)2a6=1Ca2a3=a6D(+)2=59已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A1B2C3D410如图,则的大小是ABCD11如图,AB为O的直径,C、D为O上的点,若ACCDDB,则cosCAD ( )ABCD12如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示cos的值,错误的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若一
4、个等腰三角形的周长为26,一边长为6,则它的腰长为_14的绝对值是_15我们知道方程组的解是,现给出另一个方程组,它的解是_16如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是_平方米17如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()AC的长等于_;()在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_18小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺
5、卡,则剩下的钱恰好还能买_张普通贺卡三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_名学生,最喜欢用电话沟通的所对应扇形的圆心角是_;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随
6、机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率20(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45、35已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度(结果保留整数)(参考数据:sin35=0.57,cos35=0.82,tan35=0.70)21(6分)关于x的一元二次方程ax2+bx+1=1(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根22(8分)如图,ABC和ADE分别是以BC,DE为底边
7、且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EFCD与BE相等?若相等,请证明;若不相等,请说明理由;若BAC=90,求证:BF1+CD1=FD123(8分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?24(10分)计算:()0|3|+(1)2015+
8、()125(10分)计算:sin30tan60+.26(12分)已知:二次函数C1:y1ax2+2ax+a1(a0)把二次函数C1的表达式化成ya(xh)2+b(a0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(3,1)求a的值;点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB二次函数C2:y2kx2+kx(k0)的图象,与线段AB只有一个交点,求k的取值范围27(12分)如图所示,点B、F、C、E在同一直线上,ABBE,DEBE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项
9、中,只有一项是符合题目要求的)1、D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D考点:中心对称图形2、A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE易求AE及AED的周长解:由折叠的性质知,CD=DE,BC=BE=7cmAB=10cm,BC=7cm,AE=ABBE=3cmAED的周长=AD+DE+AE=AC+AE=6+3=9(cm)故选A点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对
10、称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等3、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差4、A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体
11、的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5、B【解析】由四边形ABCD是平行四边形,可得AD/BC,AD=BC,然后由AE=CF,EBF=FDE,BED=BFD均可判定四边形BFDE是平行四边形,则可证得BE/DF,利用排除法即可求得答案【详解】四边形ABCD是平行四边形,AD/BC,AD=BC,A、AE=CF,DE=BF,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;B、BE=DF,四边形BFDE是等腰梯形,本选项不一定能判定BE/DF;C、AD/BC,BED+EBF=180,EDF+BFD=180,EBF=FDE,BED=BFD,四边形BF
12、DE是平行四边形,BE/DF,故本选项能判定BE/DF;D、AD/BC,BED+EBF=180,EDF+BFD=180,BED=BFD,EBF=FDE,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF故选B【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键6、C【解析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式【详解】2013年我省财政收入为a亿元,2014年我省财政收入比201
13、3年增长8.9%,2014年我省财政收入为a(1+8.9%)亿元,2015年比2014年增长9.5%,2015年我省财政收为b亿元,2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C【点睛】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题7、A【解析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C. ,故本选项错误;D.,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂
14、的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.8、B【解析】利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误故选:B【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性
15、质,选择恰当的解题途径,往往能事半功倍9、B【解析】先由平均数是3可得x的值,再结合方差公式计算【详解】数据1、2、3、x、5的平均数是3,=3,解得:x=4,则数据为1、2、3、4、5,方差为(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2,故选B【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义10、D【解析】依据,即可得到,再根据,即可得到【详解】解:如图,又,故选:D【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等11、D【解析】根据圆心角,弧,弦的关系定理可以得出=,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值
16、【详解】解:=,故选D【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键12、D【解析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案【详解】cos=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解【详解】当6为腰长时,则腰长为6,底边=26-6-6=14,因为146+6,所以不能构成三角形;当6为底边时,则腰长=(26-6)2=1,因为6-616+6,所以能构成三角形;故腰长为1故答案为:1【点睛】此题主要考
17、查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验14、 【解析】绝对值是指一个数在数轴上所对应点到原点的距离,用“|”来表示|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】的绝对值是|=【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.15、【解析】观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.16、【解析】试题分析:根据题意可知小羊的最大活动区域为:半径为5,圆心角度数为90的扇形和半径为1,圆心角为60的
18、扇形,则点睛:本题主要考查的就是扇形的面积计算公式,属于简单题型本题要特别注意的就是在拐角的位置时所构成的扇形的圆心角度数和半径,能够画出图形是解决这个问题的关键在求扇形的面积时,我们一定要将圆心角代入进行计算,如果题目中出现的是圆周角,则我们需要求出圆心角的度数,然后再进行计算17、5 见解析 【解析】(1)由勾股定理即可求解;(2)寻找格点M和N,构建与ABC全等的AMN,易证MNAC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,ABCMAN,AMN=BAC,MAD+CAB=MAD+AMN=9
19、0,MNAC,易解得MAN以MN为底时的高为,AB2=ADAC,AD=AB2AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.18、1【解析】根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论【详解】解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡则1张普通贺卡为:元,由题意得:,答:剩下的钱恰好还能买1张普通贺卡故答案为
20、:1【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)120,54;(2)补图见解析;(3)660名;(4).【解析】(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式
21、求解【详解】解:(1)这次统计共抽查学生2420%120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是36054,故答案为120、54;(2)喜欢使用短信的人数为120182466210(人),条形统计图为:(3)1200660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,所以甲乙两名同学恰好选中同一种沟通方式的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图和用
22、样本估计总体20、热气球离地面的高度约为1米【解析】作ADBC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可【详解】解:作ADBC交CB的延长线于D,设AD为x,由题意得,ABD=45,ACD=35,在RtADB中,ABD=45,DB=x,在RtADC中,ACD=35,tanACD= , = ,解得,x1答:热气球离地面的高度约为1米【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形21、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=2【解析】分析:(2)
23、求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.22、(1)CD=BE,理由见解析;(1)证明见解析.【解析】(1)由两个三角形为等腰三角形可得ABAC,AEAD,由BACEAD可得EABCAD,根据“SAS”可证得EABCAD,即可得出结论;(1)根据(1)中结论和等腰直角三角形的性质得出EBF9
24、0,在RtEBF中由勾股定理得出BF1BE1EF1,然后证得EFFD,BECD,等量代换即可得出结论【详解】解:(1)CDBE,理由如下:ABC和ADE为等腰三角形,ABAC,ADAE,EADBAC,EADBADBACBAD,即EABCAD,在EAB与CAD中,EABCAD,BECD;(1)BAC90,ABC和ADE都是等腰直角三角形,ABFC45,EABCAD,EBAC,EBA45,EBF90,在RtBFE中,BF1BE1EF1,AF平分DE,AEAD,AF垂直平分DE,EFFD,由(1)可知,BECD,BF1CD1FD1【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定
25、理等知识,结合题意寻找出三角形全等的条件是解决此题的关键23、(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大【解析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具只,根据总价单价数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据题意列不等式,解之即可得出x的取值范围,再根据一次函数的性质,即可解决最值问题【详解】(1)设A种文具进货x只,B种文具进货只,由题意得:,解得:x40,答:A种文具进货40只,B种文具进货60只;(2)设购进A型文具a只,则有
26、,且;解得:,a为整数,a48、49、50,一共有三种购货方案;利润,w随a增大而减小,当a48时W最大,即购买A型文具48只,购买B型文具52只使销售文具所获利润最大【点睛】本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.24、-1【解析】分析:根据零次幂、绝对值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案详解:解:()0|3|+(1)2015+()1=13+(1)+2=1 点睛:本题主要考查的是实数的计算法则,属于基础题型理解各种计算法则是解决这个问题的关键25、 【解析】试题分析:把相关的特殊三角形函数
27、值代入进行计算即可.试题解析:原式=.26、 (1)y1a(x+1)21,顶点为(1,1);(2);k的取值范围是k或k1【解析】(1)化成顶点式即可求得;(2)把点A(3,1)代入二次函数C1:y1ax2+2ax+a1即可求得a的值;根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1ax2+2ax+a1a(x+1)21,顶点为(1,1);(2)二次函数C1的图象经过点A(3,1),a(3+1)211,a;A(3,1),对称轴为直线x1,B(1,1),当k0时,二次函数C2:y2kx2+kx(k0)的图象经过A(3,1)时,19k3k,解得k,二次函数C2:y2kx2+kx(k0)的图象经过B(1,1)时,1k+k,解得k,k,当k0时,二次函数C2:y2kx2+kxk(x+)2k,k1,k1,综上,二次函数C2:y2kx2+kx(k0)的图象,与线段AB只有一个交点,k的取值范围是k或k1【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键27、证明见解析【解析】试题分析:证明三角形ABCDEF,可得.试题解析:证明:,BC=EF,,B=E=90,AC=DF,ABCDEF, AB=DE.