湖南省长沙市XX中学2023年中考数学全真模拟试卷含解析.doc

上传人:lil****205 文档编号:88311186 上传时间:2023-04-25 格式:DOC 页数:15 大小:818.50KB
返回 下载 相关 举报
湖南省长沙市XX中学2023年中考数学全真模拟试卷含解析.doc_第1页
第1页 / 共15页
湖南省长沙市XX中学2023年中考数学全真模拟试卷含解析.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《湖南省长沙市XX中学2023年中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省长沙市XX中学2023年中考数学全真模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1二次函数y=ax2+bx+c(a0)的图象如图,下列四

2、个结论:4a+c0;m(am+b)+ba(m1);关于x的一元二次方程ax2+(b1)x+c=0没有实数根;ak4+bk2a(k2+1)2+b(k2+1)(k为常数)其中正确结论的个数是()A4个B3个C2个D1个2计算的结果是( )ABCD23如图,在正五边形ABCDE中,连接BE,则ABE的度数为( )A30B36C54D724下列事件中,属于不确定事件的是( )A科学实验,前100次实验都失败了,第101次实验会成功B投掷一枚骰子,朝上面出现的点数是7点C太阳从西边升起来了D用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形5某共享单车前a公里1元,超过a公里的,

3、每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A平均数 B中位数 C众数 D方差6如图,在矩形纸片ABCD中,已知AB,BC1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为( )ABCD7为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是( )A甲、乙的众数相同B甲、乙的中位数相同C甲的平均数小于乙的平均数D甲的方差小于乙的方差8在平面直角坐标

4、系中,将抛物线绕着它与轴的交点旋转180,所得抛物线的解析式是( )ABCD9如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是ABCD10某几何体的左视图如图所示,则该几何体不可能是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)118的算术平方根是_12已知图中的两个三角形全等,则1等于_13若分式方程有增根,则m的值为_14若xay与3x2yb是同类项,则ab的值为_15使有意义的x的取值范围是_16如图,将ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上(1)计算ABC的周长等于_(2)点P、点Q(不与ABC的顶点重合)分别为边AB

5、、BC上的动点,4PB=5QC,连接AQ、PC当AQPC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明)_三、解答题(共8题,共72分)17(8分)(操作发现)(1)如图1,ABC为等边三角形,先将三角板中的60角与ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于30),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使DCE=30,连接AF,EF求EAF的度数;DE与EF相等吗?请说明理由;(类比探究)(2)如图2,ABC为等腰直角三角形,ACB=90,先将三角板的9

6、0角与ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于45),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使DCE=45,连接AF,EF请直接写出探究结果:EAF的度数;线段AE,ED,DB之间的数量关系18(8分)已知x11x11求代数式(x1)1+x(x4)+(x1)(x+1)的值19(8分)如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF求证:C=90;当BC=3,sinA=时,求AF的长20(8分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副

7、乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?21(8分)如图,已知A(4,n),B(2,4)是一次函数ykx+b的图象和反比例函数y的图象的两个交点求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围22(10分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).(1)求该抛物线的函数表达式.(2)求直线AB关于x轴对称的直线的函数表达式.(3)点P是x轴上的动点,过点P作垂

8、直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM PN时,求点P的横坐标的取值范围.23(12分)如图1,在直角梯形ABCD中,动点P从B点出发,沿BCDA匀速运动,设点P运动的路程为x,ABP的面积为y,图象如图2所示(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P运动的路程x4时,ABP的面积为y ;(3)求AB的长和梯形ABCD的面积24华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利

9、润为y元求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】因为二次函数的对称轴是直线x=1,由图象可得左交点的横坐标大于3,小于2,所以=1,可得b=2a,当x=3时,y0,即9a3b+c0,9a6a+c0,3a+c0,a0,4a+c0,所以选项结论正确;抛物线的对称轴是直线x=1,y=ab+c的值最大,即把x=m(m1)代入得:y=am2+bm+cab+c,am2+bmab,m(am+b)+ba,所以此选项结论不正确;ax2+(b1)x+c=0,=(b1)24ac,a0,c0,ac0,4

10、ac0,(b1)20,0,关于x的一元二次方程ax2+(b1)x+c=0有实数根;由图象得:当x1时,y随x的增大而减小,当k为常数时,0k2k2+1,当x=k2的值大于x=k2+1的函数值,即ak4+bk2+ca(k2+1)2+b(k2+1)+c,ak4+bk2a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D2、C【解析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.【详解】原式=32=3=.故选C.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.3、B【解析】在等腰三角形ABE中,求出A的度数即可解决问题【详解】解:在正

11、五边形ABCDE中,A=(5-2)180=108又知ABE是等腰三角形, AB=AE,ABE=(180-108)=36故选B【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单4、A【解析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件

12、,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5、B【解析】解:根据中位数的意义,故只要知道中位数就可以了故选B6、D【解析】点F的运动路径的长为弧FF的长,求出圆心角、半径即可解决问题【详解】如图,点F的运动路径的长为弧FF的长,在RtABC中,tanBAC=,BAC=30,CAF=BAC=30,BAF=60,FAF=120,弧FF的长=故选D.【点睛】本题考查了矩形的性质、特殊角的三角函数值、含30角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径7、D【解析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了

13、2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,=4.4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.8、B【解析】把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可【详解】解:y=x2+2x+3=(x+1)2+2,原抛物线的顶点坐标为(-1,2),令x=0,则y=3,抛物线与y轴的交点坐标为(0,3),抛物线绕与y轴的交点旋

14、转180,所得抛物线的顶点坐标为(1,4),所得抛物线的解析式为:y=-x2+2x+3或y=-(x-1)2+4故选:B【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便9、B【解析】根据常见几何体的展开图即可得【详解】由展开图可知第一个图形是正方体的展开图,第2个图形是圆柱体的展开图,第3个图形是三棱柱的展开图,第4个图形是四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.10、D【解析】解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左

15、往右正方形个数为2,1,1,故选D【点睛】本题考查几何体的三视图二、填空题(本大题共6个小题,每小题3分,共18分)11、2.【解析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键依据算术平方根的定义回答即可由算术平方根的定义可知:8的算术平方根是,=2,8的算术平方根是2故答案为2考点:算术平方根.12、58【解析】如图,2=1805072=58,两个三角形全等,1=2=58.故答案为58.13、-1【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出m的值【详解】方程两边都乘(x-1),得x-1(x-1)=-m

16、原方程增根为x=1,把x=1代入整式方程,得m=-1,故答案为:-1【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值14、2【解析】试题解析:xay与3x2yb是同类项,a=2,b=1,则ab=2.15、【解析】二次根式有意义的条件【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须16、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P 【解析】(1)利用勾股定理求出AB,从而得到ABC的周长;(2) 取格点D,E,F,G,H,连接DE与BC交于

17、点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.【详解】解:(1)AC=3,BC=4,C=90,根据勾股定理得AB=5,ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.【点睛】本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.三、解答题(共8题,共72分)17、(1

18、)110DE=EF;(1)90AE1+DB1=DE1 【解析】试题分析:(1)由等边三角形的性质得出AC=BC,BAC=B=60,求出ACF=BCD,证明ACFBCD,得出CAF=B=60,求出EAF=BAC+CAF=110;证出DCE=FCE,由SAS证明DCEFCE,得出DE=EF即可;(1)由等腰直角三角形的性质得出AC=BC,BAC=B=45,证出ACF=BCD,由SAS证明ACFBCD,得出CAF=B=45,AF=DB,求出EAF=BAC+CAF=90;证出DCE=FCE,由SAS证明DCEFCE,得出DE=EF;在RtAEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论试题

19、解析:解:(1)ABC是等边三角形,AC=BC,BAC=B=60DCF=60,ACF=BCD在ACF和BCD中,AC=BC,ACF=BCD,CF=CD,ACFBCD(SAS),CAF=B=60,EAF=BAC+CAF=110;DE=EF理由如下:DCF=60,DCE=30,FCE=6030=30,DCE=FCE在DCE和FCE中,CD=CF,DCE=FCE,CE=CE,DCEFCE(SAS),DE=EF;(1)ABC是等腰直角三角形,ACB=90,AC=BC,BAC=B=45DCF=90,ACF=BCD在ACF和BCD中,AC=BC,ACF=BCD,CF=CD,ACFBCD(SAS),CAF=

20、B=45,AF=DB,EAF=BAC+CAF=90;AE1+DB1=DE1,理由如下:DCF=90,DCE=45,FCE=9045=45,DCE=FCE在DCE和FCE中,CD=CF,DCE=FCE,CE=CE,DCEFCE(SAS),DE=EF在RtAEF中,AE1+AF1=EF1,又AF=DB,AE1+DB1=DE118、2.【解析】将原式化简整理,整体代入即可解题.【详解】解:(x1)1+x(x4)+(x1)(x+1)x11x+1+x14x+x143x12x3,x11x11原式3x12x33(x11x1)312【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.19、(1

21、)见解析(2)【解析】(1)连接OE,BE,因为DE=EF,所以=,从而易证OEB=DBE,所以OEBC,从可证明BCAC;(2)设O的半径为r,则AO=5r,在RtAOE中,sinA=从而可求出r的值【详解】解:(1)连接OE,BE,DE=EF,=OBE=DBEOE=OB,OEB=OBEOEB=DBE,OEBCO与边AC相切于点E,OEACBCACC=90(2)在ABC,C=90,BC=3,sinA=,AB=5,设O的半径为r,则AO=5r,在RtAOE中,sinA= 【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识20

22、、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,解得:答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)528360320元答:购买5副乒乓球拍和3副羽毛球拍共320元21、(1)yx2;(2)C(2,0),AOB=6,,(3)4x0或x2.【解析】(1)先把B点坐标代入代入y,求出

23、m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和AOB的面积SAOC+SBOC进行计算;(3)观察函数图象得到当4x0或x2时,一次函数图象都在反比例函数图象下方【详解】解:B(2,4)在反比例函数y的图象上,m2(4)8,反比例函数解析式为:y,把A(4,n)代入y,得4n8,解得n2,则A点坐标为(4,2)把A(4,2),B(2,4)分别代入ykx+b,得,解得,一次函数的解析式为yx2;(2)yx2,当x20时,x2,点C的坐标为:(2,0),AOB的面积AOC的面积+COB

24、的面积22+246;(3)由图象可知,当4x0或x2时,一次函数的值小于反比例函数的值【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用22、(1)(2)(3)【解析】(1)根据待定系数法,可得二次函数的解析式;(2)根据待定系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反数,可得答案;(3)根据PMPN,可得不等式,利用绝对值的性质化简解不等式,可得答案【详解】(1)将A(1,1),B(2,5)代入函数解析式,得:,解得:,抛物线的解析式为y=x22x3;(2)设AB的解析式为y=kx+b,

25、将A(1,1),B(2,5)代入函数解析式,得:,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=(x+1),化简,得:y=x1;(3)设M(n,n22n3),N(n,n+1),PMPN,即|n22n3|n+1|(n+1)(n-3)|-|n+1|1,|n+1|(|n-3|-1)1|n+1|1,|n-3|-11,|n-3|1,1n-31,解得:2n2故当PMPN时,求点P的横坐标xP的取值范围是2xP2【点睛】本题考查了二次函数综合题解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式

26、23、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1【解析】(1)依据点P运动的路程为x,ABP的面积为y,即可得到自变量和因变量;(2)依据函数图象,即可得到点P运动的路程x=4时,ABP的面积;(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可【详解】(1)点P运动的路程为x,ABP的面积为y,自变量为x,因变量为y故答案为x,y;(2)由图可得:当点P运动的路程x=4时,ABP的面积为y=2故答案为2;(3)根据图象得:BC=4,此时ABP为2,ABBC=2,即AB4=

27、2,解得:AB=8;由图象得:DC=94=5,则S梯形ABCD=BC(DC+AB)=4(5+8)=1【点睛】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键24、(1)y=5x2+110x+1200;(2) 售价定为189元,利润最大1805元【解析】利润等于(售价成本)销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y(200x170)(40+5x)5x2+110x+1200;(2)y5x2+110x+12005(x11)2+1805,抛物线开口向下,当x11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁