《湖南省衡阳耒阳市重点名校2023届中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省衡阳耒阳市重点名校2023届中考数学考前最后一卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1下列计算正确的是()A3B329C(3)2D3+|3|62九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数
2、是( )ABCD3小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千米/分钟;小明放学回家所用时间为15分钟其中正确的个数是()A1个B2个C3个D4个4下列运算正确的是()A(a1)a1B(2a3)24a6C(ab)2a2b2Da3+a22a55舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约49
3、9.5亿千克,这个数用科学记数法应表示为()A4.9951011B49.951010C0.49951011D4.99510106如图,不等式组的解集在数轴上表示正确的是()ABCD7下列图案中,是轴对称图形的是( )ABCD82017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒将17200用科学记数法表示应为()A172102B17.2103C1.72104D0.1721059如图,扇形AOB 中,半径OA2,AOB120,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是 ( )ABCD10下列代数运算正确的是()A(x+1)2=x2+1B(x3)2=x5C(2x
4、)2=2x2Dx3x2=x5二、填空题(本大题共6个小题,每小题3分,共18分)11若式子有意义,则x的取值范围是_12已知二次函数yax2bxc(a0)中,函数值y与自变量x的部分对应值如下表:x54321y32565则关于x的一元二次方程ax2bxc2的根是_13已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1x2时,y1与y2的大小关系为_.14如图,已知函数yx+2的图象与函数y(k0)的图象交于A、B两点,连接BO并延长交函数y(k0)的图象于点C,连接AC,若ABC的面积为1则k的值为_15在RtABC中,ACB=90,AC=8,
5、BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_16在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_三、解答题(共8题,共72分)17(8分)在平面直角坐标系中,已知直线yx+4和点M(3,2)(1)判断点M是否在直线yx+4上,并说明理由;(2)将直线yx+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;(3)另一条直线ykx+b经过点M且与直线yx+4交点的横坐标为n,当ykx+b随x的增大而增大时,则n取值范围
6、是_18(8分)如图,已知一次函数y1=kx+b(k0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点且点A的横坐标和点B的纵坐标都是1求一次函数的解析式;求AOB的面积;观察图象,直接写出y1y1时x的取值范围19(8分)在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,C=90,AC=3,BC=4.(1)试在图中作出ABC以A为旋转中心,沿顺时针方向旋转90后的图形AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.20
7、(8分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积21(8分)如图,在RtABC中,C=90,以AC为直径作O,交AB于D,过点O作OEAB,交BC于E(1)求证:ED为O的切线;(2)若O的半径为3,ED=4,EO的延长线交O于F,连DF、AF,求ADF的面积22(10分)如图,沿AC方向开山修路为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取ABD=120,BD=520m,D=30那么另一边开挖点E离D多远正好使A,C,E三点在一直线
8、上(取1.732,结果取整数)?23(12分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元 (1)求A、B两种钢笔每支各多少元? (2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案? (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售
9、这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?24某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分请根据图表信息回答下列问题:视力频数(人)频率4.0x4.3200.14.3x4.6400.24.6x4.9700.354.9x5.2a0.35.2x5.510b(1)本次调查的样本为 ,样本容量为 ;在频数分布表中,a ,b ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?参考答案一、选择题
10、(共10小题,每小题3分,共30分)1、C【解析】分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可【详解】=3,故选项A不合题意;329,故选项B不合题意;(3)2,故选项C符合题意;3+|3|3+30,故选项D不合题意故选C【点睛】本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键2、C【解析】试题分析:由题意可得,第一小组对应的圆心角度数是:360=72,故选C考点:1.扇形统计图;2.条形统计图3、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(
11、B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一4、B【解析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解【详解】解:A、因为(a1)=a+1,故本选项错误;B、(2a3)2=4a6,正确;C、因为(ab)
12、2=a22ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误故选B【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键5、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【详解】将499.5亿用科学记数法表示为:4.9951故选D【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以
13、及n的值6、B【解析】首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【详解】解:解第一个不等式得:x-1;解第二个不等式得:x1,在数轴上表示,故选B.【点睛】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “” ,“” 要用实心圆点表示; “ ” 要用空心圆点表示.7、B【解析】根据轴对称图形的定义,逐一进行判断.【详解】A、C是中心对称图形,但不是轴对称图形;B
14、是轴对称图形;D不是对称图形.故选B.【点睛】本题考查的是轴对称图形的定义.8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将17200用科学记数法表示为1.721故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、A【解析】试题分析:连接AB、OC,ABOC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进
15、行求面积,求得四边形面积是,扇形面积是S=r2= ,所以阴影部分面积是扇形面积减去四边形面积即.故选A.10、D【解析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、xy1【解析】分析:直接利用一次函数的性质分析得出答案详解:直线经过第一、二
16、、四象限,y随x的增大而减小,x1x1,y1与y1的大小关系为:y1y1故答案为:点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键14、3【解析】连接OA根据反比例函数的对称性可得OB=OC,那么SOAB=SOAC=SABC=2求出直线y=x+2与y轴交点D的坐标设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据SOAB=2,得出a-b=2根据SOAC=2,得出-a-b=2,与联立,求出a、b的值,即可求解【详解】如图,连接OA由题意,可得OB=OC,SOAB=SOAC=SABC=2设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2
17、),B(b,b+2),则C(-b,-b-2),SOAB=2(a-b)=2,a-b=2 过A点作AMx轴于点M,过C点作CNx轴于点N,则SOAM=SOCN=k,SOAC=SOAM+S梯形AMNC-SOCN=S梯形AMNC=2,(-b-2+a+2)(-b-a)=2,将代入,得-a-b=2 ,+,得-2b=6,b=-3,-,得2a=2,a=1,A(1,3),k=13=3故答案为3【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中根据反比例函数的对称性得出OB=OC是解题的突破口15、1
18、【解析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在CEM中根据三边关系即可求解【详解】作AB的中点E,连接EM、CE,在直角ABC中,AB=10,E是直角ABC斜边AB上的中点,CE=AB=5,M是BD的中点,E是AB的中点,ME=AD=2,在CEM中,5-2CM5+2,即3CM1,最大值为1,故答案为1【点睛】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答16、【解析】用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种
19、等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解【详解】解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡片上印有图案都是轴对称图形的概率故答案为【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率也考查了轴对称图形三、解答题(共8题,共72分)17、(1)点M(1,2)不在直线y=x+4上,理由见解析;(2)平移的距离为1或2;(1)2n1【解析】(1)将x=1代入y=-
20、x+4,求出y=-1+4=12,即可判断点M(1,2)不在直线y=-x+4上;(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b分两种情况进行讨论:点M(1,2)关于x轴的对称点为点M1(1,-2);点M(1,2)关于y轴的对称点为点M2(-1,2)分别求出b的值,得到平移的距离;(1)由直线y=kx+b经过点M(1,2),得到b=2-1k由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=根据y=kx+b随x的增大而增大,得到k0,即0,那么,或,分别解不等式组即可求出n的取值范围【详解】(1)点M不在直线y=x+4上,理由如下:当x=1时,y=
21、1+4=12,点M(1,2)不在直线y=x+4上;(2)设直线y=x+4沿y轴平移后的解析式为y=x+4+b点M(1,2)关于x轴的对称点为点M1(1,2),点M1(1,2)在直线y=x+4+b上,2=1+4+b,b=1,即平移的距离为1;点M(1,2)关于y轴的对称点为点M2(1,2),点M2(1,2)在直线y=x+4+b上,2=1+4+b,b=2,即平移的距离为2综上所述,平移的距离为1或2;(1)直线y=kx+b经过点M(1,2),2=1k+b,b=21k直线y=kx+b与直线y=x+4交点的横坐标为n,y=kn+b=n+4,kn+21k=n+4,k=y=kx+b随x的增大而增大,k0,
22、即0,或,不等式组无解,不等式组的解集为2n1n的取值范围是2n1故答案为2n1【点睛】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握18、(1)y1=x+1,(1)6;(3)x1或0x4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为AOB的分割线,求得AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可试题解析:(1)设点A坐标为(1,m),点B坐标为(n,1)一次函数y1=kx+b(
23、k0)的图象与反比例函数y1=的图象交于A、B两点将A(1,m)B(n,1)代入反比例函数y1=可得,m=4,n=4将A(1,4)、B(4,1)代入一次函数y1=kx+b,可得,解得一次函数的解析式为y1=x+1;,(1)在一次函数y1=x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)=11+11+11=1+1+1=6;(3)根据图象可得,当y1y1时,x的取值范围为:x1或0x4考点:1、一次函数,1、反比例函数,3、三角形的面积19、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5)
24、,点C2的坐标为(3,-1).【解析】(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;(2)根据点B的坐标画出平面直角坐标系;(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.【详解】(1)A如图所示;(2)如图所示,A(0,1),C(3,1);(3)如图所示,(3,5),(3,1)20、(1)矩形的周长为4m;(2)矩形的面积为1【解析】(1)根据题意和矩形的周长公式列出代数式解答即可(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:mn,矩形的宽为:m+n,矩形的周长为:2(m-n)+(m+n)=4m;(2)矩形
25、的面积为S=(m+n)(mn)=m2-n2,当m=7,n=4时,S=72-42=1【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答21、(1)见解析;(2)ADF的面积是【解析】试题分析:(1)连接OD,CD,求出BDC=90,根据OEAB和OA=OC求出BE=CE,推出DE=CE,根据SSS证ECOEDO,推出EDO=ACB=90即可;(2)过O作OMAB于M,过F作FNAB于N,求出OM=FN,求出BC、AC、AB的值,根据sinBAC,求出OM,根据cosBAC,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可试题
26、解析:(1)证明:连接OD,CD,AC是O的直径,CDA=90=BDC,OEAB,CO=AO,BE=CE,DE=CE,在ECO和EDO中 ,ECOEDO,EDO=ACB=90,即ODDE,OD过圆心O,ED为O的切线(2)过O作OMAB于M,过F作FNAB于N,则OMFN,OMN=90,OEAB,四边形OMFN是矩形,FN=OM,DE=4,OC=3,由勾股定理得:OE=5,AC=2OC=6,OEAB,OECABC,AB=10,在RtBCA中,由勾股定理得:BC=8,sinBAC=,即 ,OM=FN,cosBAC=,AM= 由垂径定理得:AD=2AM=,即ADF的面积是ADFN=答:ADF的面积
27、是【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力22、450m.【解析】若要使A、C、E三点共线,则三角形BDE是以E为直角的三角形,利用三角函数即可解得DE的长【详解】解:,在中,答:另一边开挖点离,正好使,三点在一直线上【点睛】本题考查的知识点是解直角三角形的应用和勾股定理的运用,解题关键是是熟记含30的直角三角形的性质.23、(1) A种钢笔每只15元 B种钢笔每只20元;(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种
28、钢笔44支,购进B种钢笔46支;(3) 定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得 ,解得: ,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,42.4z45,z是整数z=43,44,90-z=47,或46;共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a+28a+680=-4(a-)+729,-40,W有最大值,a为正整数,当a=3,或a=4时,W最大,W最大=-4(3-)+729=728
29、,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元24、200名初中毕业生的视力情况 200 60 0.05 【解析】(1)根据视力在4.0x4.3范围内的频数除以频率即可求得样本容量;(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;(3)求出样本中视力正常所占百分比乘以5000即可得解.【详解】(1)根据题意得:200.1=200,即本次调查的样本容量为200,故答案为200;(2)a=2000.3=60,b=10200=0.05,补全频数分布图,如图所示,故答案为60,0.05;(3)根据题意得:5000=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人