《湖南省邵阳市黄亭市镇中学2022-2023学年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省邵阳市黄亭市镇中学2022-2023学年中考数学押题卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).ABCD2如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形ABC,CDE,EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则DIJ的面积是()
2、ABCD3下列图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A73B81C91D1094如图,等腰ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数2,2,则AC的长度为()A2B4C2D45如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A垂线段最短B经过一点有无数条直线C两点之间,线段最短D经过两点,有且仅有一条直线6的整数部分是()A3B5C9D6
3、7某排球队名场上队员的身高(单位:)是:,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均数变小,方差变大C平均数变大,方差变小D平均数变大,方差变大8在解方程1时,两边同时乘6,去分母后,正确的是()A3x162(3x1)B(x1)12(x1)C3(x1)12(3x1)D3(x1)62(3x1)9二次函数y=ax2+bx+c(a0)的图象如图所示,下列说法:2a+b=0,当1x3时,y0;3a+c=0;若(x1,y1)(x2、y2)在函数图象上,当0x1x2时,y1y2,其中正确的是()ABCD10如图,CE,BF分别是ABC的高线,
4、连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )A6B5C4D3二、填空题(共7小题,每小题3分,满分21分)11如图,直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,那么当y1y2时,x的取值范围是_12用配方法将方程x2+10x110化成(x+m)2n的形式(m、n为常数),则m+n_13点A(-2,1)在第_象限.14若圆锥的地面半径为,侧面积为,则圆锥的母线是_15如图,若1+2=180,3=110,则4= 16化简的结果为_17如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半
5、径的扇形(忽略铁丝的粗细)则所得扇形AFB(阴影部分)的面积为_三、解答题(共7小题,满分69分)18(10分)如图,O是ABC的外接圆,AD是O的直径,BC的延长线于过点A的直线相交于点E,且B=EAC(1)求证:AE是O的切线;(2)过点C作CGAD,垂足为F,与AB交于点G,若AGAB=36,tanB=,求DF的值19(5分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分ABO交x轴于点C(2,0)点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分PDO交y轴于点F设点D的横坐标为t(1)如图
6、1,当0t2时,求证:DFCB;(2)当t0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当MCE的面积等于BCO面积的倍时,直接写出此时点E的坐标20(8分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到 米)(参考数据:,)21(10分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学
7、科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人22(10分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班
8、学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)23(12分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求
9、出这个最大值.24(14分)某商场经营某种品牌的童装,购进时的单价是60元根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出1,再根据两直线平行,同位角相等可得2=1【详解】如图
10、,由三角形的外角性质得:1=90+1=90+58=148直尺的两边互相平行,2=1=148故选D【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键2、A【解析】根据等边三角形的性质得到FGEG3,AGFFEG60,根据三角形的内角和得到AFG90,根据相似三角形的性质得到=,=,根据三角形的面积公式即可得到结论【详解】AC1,CE2,EG3,AG6,EFG是等边三角形,FGEG3,AGFFEG60,AEEF3,FAGAFE30,AFG90,CDE是等边三角形,DEC60,AJE90,JEFG,AJEAFG,=,EJ,BCADCEFEG60,
11、BCDDEF60,ACIAEF120,IACFAE,ACIAEF,=,CI1,DI1,DJ,IJ,=DIIJ故选:A【点睛】本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键3、C【解析】试题解析:第个图形中一共有3个菱形,3=12+2;第个图形中共有7个菱形,7=22+3;第个图形中共有13个菱形,13=32+4;,第n个图形中菱形的个数为:n2+n+1;第个图形中菱形的个数92+9+1=1故选C考点:图形的变化规律.4、C【解析】根据等腰三角形的性质和勾股定理解答即可【详解】解:点A,D分别对应数轴上的实数2,2,AD4,等腰
12、ABC的底边BC与底边上的高AD相等,BC4,CD2,在RtACD中,AC,故选:C【点睛】此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理5、C【解析】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,线段AB的长小于点A绕点C到B的长度,能正确解释这一现象的数学知识是两点之间,线段最短,故选C【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单6、C【解析】解:=1,=+
13、,原式=1+=1+10=1故选C7、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为=188,方差为S2=;换人后6名队员身高的平均数为=187,方差为S2=188187,平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8、D【解析】解: ,3(x1)6=2(3x+1),故选D点睛:本题考查了等式的性质,解题的关
14、键是正确理解等式的性质,本题属于基础题型9、B【解析】函数图象的对称轴为:x=-=1,b=2a,即2a+b=0,正确;由图象可知,当1x3时,y0,错误;由图象可知,当x=1时,y=0,ab+c=0,b=2a,3a+c=0,正确;抛物线的对称轴为x=1,开口方向向上,若(x1,y1)、(x2,y2)在函数图象上,当1x1x2时,y1y2;当x1x21时,y1y2;故错误;故选B点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理10、C【解析】连接EG、FG,根据斜边中线长为斜
15、边一半的性质即可求得EGFGBC,因为D是EF中点,根据等腰三角形三线合一的性质可得GDEF,再根据勾股定理即可得出答案【详解】解:连接EG、FG,EG、FG分别为直角BCE、直角BCF的斜边中线,直角三角形斜边中线长等于斜边长的一半EGFGBC=10=5,D为EF中点GDEF,即EDG90,又D是EF的中点,,在中,,故选C.【点睛】本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GDEF是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、1x2【解析】根据图象得出取值范围即可【详解】解:因为直线
16、y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,所以当y1y2时,1x2,故答案为1x2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围12、1【解析】方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可【详解】解:x2+10x-11=0,x2+10x=11,则x2+10x+25=11+25,即(x+5)2=36,m=5、n=36,m+n=1,故答案为1【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键13、二【解析】根据点在第二象限的坐标特点解答即可【详解】点A的横坐标-20,纵坐标10,点A在
17、第二象限内故答案为:二【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)14、13【解析】试题解析:圆锥的侧面积=底面半径母线长,把相应数值代入即可求解设母线长为R,则: 解得: 故答案为13.15、110【解析】解:1+2=180,ab,3=4,又3=110,4=110故答案为11016、+1【解析】利用积的乘方得到原式(1)(+1)2017(+1),然后利用平方差公式计算【详解】原式(1)(+1)2017(+1)(21)2017(+1)+1故答案为:+1【点睛】本题考查了二次根式的混合运算,在二
18、次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍17、1【解析】解:正六边形ABCDEF的边长为3,AB=BC=CD=DE=EF=FA=3,弧BAF的长=363312,扇形AFB(阴影部分)的面积=123=1故答案为1【点睛】本题考查正多边形和圆;扇形面积的计算三、解答题(共7小题,满分69分)18、(1)见解析;(2)4【解析】分析:(1)欲证明AE是O切线,只要证明OAAE即可;(2)由ACDCFD,可得,想办法求出CD、AD即可解决问题. 详解:(1)证明:连接CDB=D,AD是直径,ACD=90,D+1=90,B+1=90,B=EAC,E
19、AC+1=90,OAAE,AE是O的切线(2)CGADOAAE,CGAE,2=3,2=B,3=B,CAG=CAB,ABCACG,AC2=AGAB=36,AC=6,tanD=tanB=,在RtACD中,tanD=CD=6,AD=6,D=D,ACD=CFD=90,ACDCFD,DF=4,点睛:本题考查切线的性质、圆周角定理、垂径定理、相似三角形的判定和性质、解直角三角形等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型19、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)求出PBO+PDO=180,根据角平分线定义得出CBO=PBO,ODF=PDO,求出CBO+ODF=90
20、,求出CBO=DFO,根据平行线的性质得出即可;(2)求出ABO=PDA,根据角平分线定义得出CBO=ABO,CDQ=PDO,求出CBO=CDQ,推出CDQ+DCQ=90,求出CQD=90,根据垂直定义得出即可;(3)分为两种情况:根据三角形面积公式求出即可【详解】(1)证明:如图1在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),AOB=90DPAB于点P,DPB=90,在四边形DPBO中,DPB+PBO+BOD+PDO=360,PBO+PDO=180,BC平分ABO,DF平分PDO,CBO=PBO,ODF=PDO,CBO+ODF=(PBO+PDO)=90,在FDO中,
21、OFD+ODF=90,CBO=DFO,DFCB(2)直线DF与CB的位置关系是:DFCB,证明:延长DF交CB于点Q,如图2,在ABO中,AOB=90,BAO+ABO=90,在APD中,APD=90,PAD+PDA=90,ABO=PDA,BC平分ABO,DF平分PDO,CBO=ABO,CDQ=PDO,CBO=CDQ,在CBO中,CBO+BCO=90,CDQ+DCQ=90,在QCD中,CQD=90,DFCB(3)解:过M作MNy轴于N,M(4,-1),MN=4,ON=1,当E在y轴的正半轴上时,如图3,MCE的面积等于BCO面积的倍时,2OE+(2+4)1-4(1+OE)=24,解得:OE=,当
22、E在y轴的负半轴上时,如图4,(2+4)1+(OE-1)4-2OE=24,解得:OE=,即E的坐标是(0,)或(0,-)【点睛】本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度20、6.58米【解析】试题分析:过A点作AECD于E在RtABE中,根据三角函数可得AE,BE,在RtADE中,根据三角函数可得DE,再根据DB=DEBE即可求解试题解析:过A点作AECD于E 在RtABE中,ABE=62 AE=ABsin62=250.88=22米,BE=ABcos62=250.47=11.75米, 在RtADE中,ADB=50, DE
23、=18米,DB=DEBE6.58米 故此时应将坝底向外拓宽大约6.58米考点:解直角三角形的应用-坡度坡角问题21、(1)图形见解析;(2)1;(3)1.【解析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得【详解】解:(1)被调查的总人数为2020%100(人),则辅导1个学科(B类别)的人数为100(20+30+10+5)35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外
24、辅导班在3个学科(含3个学科)以上的学生共有2000 1(人),故答案为1【点睛】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键22、(4)A高中观点4 446;(4)456人;(4)【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断
25、有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%460=446;(4)80044%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50(4-60%-44%)=508%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种所以恰好选到4位女同学的概率=考点:4列表法与树状图法;4用样本估计
26、总体;4扇形统计图23、112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=302x与自变量x的取值范围为6x11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值试题解析:解:(1)y=302x(6x11)(2)设矩形苗圃园的面积为S,则S=xy=x(302x)=2x2+30x,S=2(x7.1)2+112.1,由(1)知,6x11,当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1点睛:此题考查了二次函数的实际应用问
27、题解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可24、(1);(2);(3)最多获利4480元.【解析】(1)销售量y为200件加增加的件数(80x)20;(2)利润w等于单件利润销售量y件,即W=(x60)(20x+1800),整理即可;(3)先利用二次函数的性质得到w=20x2+3000x108000的对称轴为x=75,而20x+1800240,x78,得76x78,根据二次函数的性质得到当76x78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润【详解】(1)根据题意得,y=200+(80x)20=20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=20x+1800(60x80);(2)W=(x60)y=(x60)(20x+1800)=20x2+3000x108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=20x2+3000x108000;(3)根据题意得,20x+1800240,解得x78,76x78,w=20x2+3000x108000,对称轴为x=75,a=200,抛物线开口向下,当76x78时,W随x的增大而减小,x=76时,W有最大值,最大值=(7660)(2076+1800)=4480(元)所以商场销售该品牌童装获得的最大利润是4480元【点睛】二次函数的应用