《甘肃省兰州市七里河区重点名校2023年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《甘肃省兰州市七里河区重点名校2023年中考猜题数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列事件是确定事件的是()A阴天一定会下雨B黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C打开电视机,任选一个频道,屏幕上正在播放新闻联播D在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书2估计2的值应该在()A10之间B01之间C12之间D23之间3今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.
3、2%下降到3.1%,将830万用科学记数法表示为()A83105B0.83106C8.3106D8.31074下列算式中,结果等于x6的是()Ax2x2x2 Bx2+x2+x2 Cx2x3 Dx4+x25郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米)2.102.202.252.302.352.402.452.50人数23245211则下列叙述正确的是()A这些运动员成绩的众数是 5B这些运动员成绩的中位数是 2.30C这些运动员的平均成绩是 2.25D这些运动员成绩的方差是 0.07256中国传统
4、扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )ABCD7如图,ABC中,AB=AC=15,AD平分BAC,点E为AC的中点,连接DE,若CDE的周长为21,则BC的长为( )A16B14C12D68如图,O的半径为6,直径CD过弦EF的中点G,若EOD60,则弦CF的长等于( )A6B6C3D99如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()ABCD10下列说法不正确的是( )A某种彩票中奖的概率是,买1000张该种彩票一定会中奖B了解一批电视机的使用寿命适合用抽样调查C若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=
5、0.25,则乙组数据比甲组数据稳定D在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件11已知M9x24x3,N5x24x2,则M与N的大小关系是( )AMNBMNCMy2 时,x的取值范围22(8分) 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H(1)观察猜想如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是 ;AHB (2)探究证明如图2,当四边形ABCD和FFCG均为矩形,且ACBECF30时,(1)中的结论是否仍然成立,并说明理由(3)拓展延伸在(2)的条件下,若BC9,FC6,将矩形EFCG绕点C旋转,在整个旋转过程中,当
6、A、E、F三点共线时,请直接写出点B到直线AE的距离23(8分)计算:|1|+(1)2018tan6024(10分)如图,ABC和BEC均为等腰直角三角形,且ACBBEC90,AC4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)若PE1,求PBD的面积25(10分)计算:(2)+26(12分)若关于的方程无解,求的值.27(12分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA,OC 为邻边作矩形 OA
7、BC, 动点 M,N 以每秒 1 个单位长度的速度分别从点 A、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NPBC,交 OB 于点 P,连接 MP(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记OMP 的面积为 S,求 S 与 t 的函数关系式;并求 t 为何值时,S有最大值,并求出最大值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】试题分析:找到一定发生或一定不发生的事件即可A、阴天一定会下雨,是随机事件
8、;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛出的篮球一定会下落,是必然事件故选D考点:随机事件2、A【解析】直接利用已知无理数得出的取值范围,进而得出答案【详解】解:12,1-222-2,-120即-2在-1和0之间故选A【点睛】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键3、C【解析】科学记数法,是指把一个大于10(或者小于1)的整数记为a10n的形式(其中1| a| 10|)的记数法.【详解】830万=8300000=8.3106.故选C【点睛】本题考核知识点:科
9、学记数法.解题关键点:理解科学记数法的意义.4、A【解析】试题解析:A、x2x2x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意故选A5、B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B【点睛】考查了方差、平均数、中位数和众数,熟练
10、掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量6、C【解析】根据中心对称图形的概念进行分析【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C【点睛】考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合7、C【解析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为ABC中位线,故ABC的周长是CDE的
11、周长的两倍,由此可求出BC的值.【详解】AB=AC=15,AD平分BAC,D为BC中点,点E为AC的中点,DE为ABC中位线,DE=AB,ABC的周长是CDE的周长的两倍,由此可求出BC的值.AB+AC+BC=42,BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.8、B【解析】连接DF,根据垂径定理得到 , 得到DCF=EOD=30,根据圆周角定理、余弦的定义计算即可【详解】解:连接DF,直径CD过弦EF的中点G,DCF=EOD=30,CD是O的直径,CFD=90,CF=CDcosDCF=12 = ,故选B【点睛】本题考查
12、的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键9、D【解析】分析:根据相似三角形的性质进行解答即可详解:在平行四边形ABCD中,AECD, EAFCDF, AFBC,EAFEBC, 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.10、A【解析】试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据
13、的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确故选A考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件11、A【解析】若比较M,N的大小关系,只需计算M-N的值即可【详解】解:M9x24x3,N5x24x2,M-N=(9x24x3)-(5x24x2)=4(x-1)2+10,MN故选A【点睛】本题的主要考查了比较代数式的大小,可以让两者相减再分析情况12、B【解析】过点A作AMBC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,BM=3,BC=2BM=6,SABC=12,故选B.【点睛】本题考查
14、了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、4 5 5 【解析】根据二次根式的性质即可求出答案【详解】原式=4;原式=5;原式=5,故答案为:4;5;5【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型14、22.5【解析】ABCD是正方形,DBC=BCA=45,BP=BC,BCP=BPC=(180-45)=67.5,ACP度数是67.5-45=22.515、【解析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论【详解】解:由
15、图可知,黑色方砖4块,共有16块方砖,黑色方砖在整个区域中所占的比值它停在黑色区域的概率是;故答案为【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=16、【解析】根据直角三角形的中点性质结合勾股定理解答即可.【详解】解:,点F是AD的中点, .故答案为: .【点睛】此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.17、【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:2(1)+12=0,与垂直; 与不垂直. 与垂直. 与垂直.故答案为:.点睛:考查平面向量,解题的关键是掌握向量垂直的定义
16、.18、【解析】根据题意列出表格或树状图即可解答【详解】解:根据题意画出树状图如下:总共有9种情况,其中两个数字之和为8的有2种情况,故答案为:【点睛】本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2).【解析】(1)直接利用概率公式计算;(2)画树状图展示所有36种等可能的结果数,再找出两人取出的筷子颜色相同的结果数,然后根据概率公式求解【详解】(1)小丽随机取出一根筷子是红色的概率=;(2)画树状图为:共有36种等可能的结果数,其中两人取出的筷子颜色相同的结果数为1
17、2,所以小丽随爸爸去看新春灯会的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率20、(1)见解析;(2)BG=BC+CG=1【解析】(1)利用正方形的性质,可得A=D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得ABEDEF;(2)根据相似三角形的预备定理得到EDFGCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:ABCD为正方形,AD=AB=DC=BC,A=D=90 .AE=ED,AE:AB=1:2
18、.DF=DC,DF:DE=1:2,AE:AB=DF:DE,ABEDEF;(2)解:ABCD为正方形,EDBG,EDFGCF,ED:CG=DF:CF.又DF=DC,正方形的边长为4,ED=2,CG=6,BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.21、(1)y12x4,y2;(2)x1或0x1【解析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x
19、的取值即可【详解】解:(1)把点A(1,6)代入反比例函数(m0)得:m=16=6,将B(a,2)代入得:,a=1,B(1,2),将A(1,6),B(1,2)代入一次函数y1=kx+b得:,;(2)由函数图象可得:x1或0x1【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键22、(1),45;(2)不成立,理由见解析;(3) .【解析】(1)由正方形的性质,可得 ,ACBGEC45,求得CAECBF,由相似三角形的性质得到,CAB45,又因为CBA90,所以AHB45.(2)由矩形的性质,及ACBECF30,得到CAECBF,由相似三角形的性质可得CAECBF,
20、,则CAB60,又因为CBA90,求得AHB30,故不成立.(3)分两种情况讨论:作BMAE于M,因为A、E、F三点共线,及AFB30,AFC90,进而求得AC和EF ,根据勾股定理求得AF,则AEAFEF,再由(2)得: ,所以BF33,故BM .如图3所示:作BMAE于M,由A、E、F三点共线,得:AE6+2,BF3+3,则BM.【详解】解:(1)如图1所示:四边形ABCD和EFCG均为正方形, ,ACBGEC45, ACEBCF,CAECBF,CAECBF,CABCAE+EABCBF+EAB45,CBA90,AHB180904545,故答案为,45; (2)不成立;理由如下:四边形ABC
21、D和EFCG均为矩形,且ACBECF30,ACEBCF,CAECBF,CAECBF,,CABCAE+EABCBF+EAB60,CBA90,AHB180906030;(3)分两种情况:如图2所示:作BMAE于M,当A、E、F三点共线时,由(2)得:AFB30,AFC90,在RtABC和RtCEF中,ACBECF30,AC,EFCFtan306 2 ,在RtACF中,AF ,AEAFEF6 2,由(2)得: ,BF (62)33,在BFM中,AFB30,BMBF ;如图3所示:作BMAE于M,当A、E、F三点共线时,同(2)得:AE6+2,BF3+3,则BMBF;综上所述,当A、E、F三点共线时,
22、点B到直线AE的距离为 【点睛】本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.23、1【解析】原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值【详解】|1|+(1)2118tan61=1+1=1【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.24、 (1)见解析;(2) ACBD,理由见解析;(3)【解析】(1)直接利用相似三角形的判定方法得出BCEDCP,进而得出答案;(2)首先得出PCEDCB,进而求出ACB=CBD,
23、即可得出AC与BD的位置关系;(3)首先利用相似三角形的性质表示出BD,PM的长,进而根据三角形的面积公式得到PBD的面积【详解】(1)证明:BCE和CDP均为等腰直角三角形,ECBPCD45,CEBCPD90,BCEDCP,;(2)解:结论:ACBD,理由:PCE+ECDBCD+ECD45,PCEBCD,又,PCEDCB,CBDCEP90,ACB90,ACBCBD,ACBD;(3)解:如图所示:作PMBD于M,AC4,ABC和BEC均为等腰直角三角形,BECE4,PCEDCB,即,BD,PBMCBDCBP45,BPBE+PE4+15,PM5sin45PBD的面积SBDPM【点睛】本题考查相似
24、三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.25、5- 【解析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得详解:原式=3(2-)-+=6-+=5-点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.26、【解析】分析:该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1(1)把x=0代入(a+2)x=1,a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=
25、0时,0x=1,x无解即a=-2时,整式方程无解综上所述,当a=1或a=-2时,原方程无解故答案为a=1或a=-2点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形27、(1),;(2),1,1【解析】(1)根据四边形OABC为矩形即可求出点B坐标,设直线OB解析式为,将B代入即可求直线OB的解析式;(2)由题意可得,由(1)可得点的坐标为, 表达出OMP的面积即可,利用二次函数的性质求出最大值【详解】解:(1)OA=6,OC=4, 四边形OABC为矩形,AB=OC=4,点B,设直线OB解析式为,将B代入得,解得,故答案为:;(2)由题可知,由(1)可知,点的坐标为,当时,有最大值1【点睛】本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式