《贵州省毕节市市级名校2023年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《贵州省毕节市市级名校2023年中考三模数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A8,9B8,8.5C16,8.5D16,10.52在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红
2、球,4个蓝球若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()ABCD3抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A中位数 B众数 C平均数 D方差4已知反比例函数,下列结论不正确的是()A图象必经过点(1,2)By随x的增大而增大C图象在第二、四象限内D若,则5如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(3,1)、C(0,1),若将ABC绕点C沿顺时针方向旋转90后得到A1B1C,则点B对应点B1的坐标是()A(3,1)B(2,2)C(1,3)D(3,
3、0)6如图,O的半径OD弦AB于点C,连接AO并延长交O于点E,连接EC,若AB=8,CD=2,则cosECB为()ABCD7下列计算正确的是( )Ax2+x2=x4 Bx8x2=x4 Cx2x3=x6 D(-x)2-x2=08某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A5.035106B50.35105C5.035106D5.0351059四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根首尾顺次相接都能组成一个三角形,则( )A组成的三角形中周长最小为9B组成的三角形中周长最小为10C组成的三角形中周长最大为19D组成的三角形中周长最大为1610自20
4、13年10月总书记提出“精准扶贫”的重要思想以来各地积极推进精准扶贫,加大帮扶力度全国脱贫人口数不断增加仅2017年我国减少的贫困人口就接近1100万人将1100万人用科学记数法表示为()A1.1103人B1.1107人C1.1108人D11106人二、填空题(共7小题,每小题3分,满分21分)11已知函数是关于的二次函数,则_12如图,菱形ABCD的边ADy轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y(k0,x0)的图象经过顶点C、D,若点C的横坐标为5,BE3DE,则k的值为_13如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为_14满
5、足的整数x的值是_15如图,已知ABC中,ABC50,P为ABC内一点,过点P的直线MN分別交AB、BC于点M、N若M在PA的中垂线上,N在PC的中垂线上,则APC的度数为_16一次函数与的图象如图,则的解集是_17从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数1004008001 0002 0005 000发芽种子粒数853186527931 6044 005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为_(精确到0.1)三、解答题(共7小题,满分69分)18(10分)某商场一种商品的进价为每件30元
6、,售价为每件40元每天可以销售48件,为尽快减少库存,商场决定降价促销若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?19(5分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数小马虎根据竞赛成绩,绘制了如图所示的统计图经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九
7、(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛预赛分为A、B、C、D四组进行,选手由抽签确定张明、李刚两名同学恰好分在同一组的概率是多少?20(8分)当x取哪些整数值时,不等式与47x3都成立?21(10分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数22(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34,45,其中点O,A,B在同一条直线上(1)求A,B两点间的距离(结果精确到0.1km)(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56,求此时雷达站C和运载
8、火箭D两点间的距离(结果精确到0.1km)(参考数据:sin34=0.56,cos34=0.83,tan34=0.1)23(12分)如图1,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx+c(a0)相交于点A(1,0)和点D(4,5),并与y轴交于点C,抛物线的对称轴为直线x=1,且抛物线与x轴交于另一点B(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出ACE面积的最大值;(3)如图2,若点M是直线x=1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由24(14分)2018年4月1
9、2日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A【点睛】考查了中位数、众数的概念本题为统计题,考查众数与中位数的意义,中位数
10、是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数2、A【解析】设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为,故选A【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所求的情况数是解决本题的关键3、A【解析】7人成绩的中位数是第4名的成绩参
11、赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.4、B【解析】试题分析:根据反比例函数y=的性质,当k0时,在每一个象限内,函数值y随自变量x的增大而减小;当k0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2); B、在每个象限内y随x的增大而增大,
12、在自变量取值范围内不成立,则命题错误; C、命题正确; D、命题正确故选B考点:反比例函数的性质5、B【解析】作出点A、B绕点C按顺时针方向旋转90后得到的对应点,再顺次连接可得A1B1C,即可得到点B对应点B1的坐标【详解】解:如图所示,A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2)故选:B【点睛】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标6、D【解析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度利用锐角三角函数的
13、定义即可求出答案【详解】解:连接EB,由圆周角定理可知:B=90,设O的半径为r,由垂径定理可知:AC=BC=4,CD=2,OC=r-2,由勾股定理可知:r2=(r-2)2+42,r=5,BCE中,由勾股定理可知:CE=2,cosECB=,故选D【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型7、D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方8、A【解析】试题分析:0.000
14、005 035m,用科学记数法表示该数为5.035106,故选A考点:科学记数法表示较小的数9、D【解析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:其中的任意三根的组合有3、4、1;3、4、x;3、1、x;4、1、x共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3x7,即x=4或5或1当三边为3、4、1时,其周长为3+4+1=13;当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;若x=1时,周长最小为3
15、+4+1=13,周长最大为4+1+1=11;综上所述,三角形周长最小为11,最大为11,故选:D【点睛】本题考查的是三角形三边关系,利用了分类讨论的思想掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键10、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:1100万=11000000=1.1107.故选B.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10
16、,n为整数,表示时关键要正确确定a的值以及n的值二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据一元二次方程的定义可得:,且,求解即可得出m的值【详解】解:由题意得:,且,解得:,且,故答案为:1【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”12、【解析】过点D作DFBC于点F,由菱形的性质可得BCCD,ADBC,可证四边形DEBF是矩形,可得DFBE,DEBF,在RtDFC中,由勾股定理可求DE1,DF3,由反比例函数的性质可求k的值【详解】如图,过点D作DFBC于点F,四边形ABCD是菱形,BCCD,ADBC,DEB
17、90,ADBC,EBC90,且DEB90,DFBC,四边形DEBF是矩形,DFBE,DEBF,点C的横坐标为5,BE3DE,BCCD5,DF3DE,CF5DE,CD2DF2+CF2,259DE2+(5DE)2,DE1,DFBE3,设点C(5,m),点D(1,m+3),反比例函数y图象过点C,D,5m1(m+3),m,点C(5,),k5,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键13、【解析】延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值【详解】延长GF与CD交于点D
18、,过点E作交DF于点M, 设正方形的边长为,则, 故答案为:【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.14、3,1【解析】直接得出23,15,进而得出答案【详解】解:23,15,的整数x的值是:3,1故答案为:3,1【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键15、115【解析】根据三角形的内角和得到BAC+ACB=130,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到MAP=APM,CPN=PCN,推出MAP+PCN=PAC+ACP=130=65,于是得到结论【详解】ABC=50,BAC+ACB=130,若M
19、在PA的中垂线上,N在PC的中垂线上,AM=PM,PN=CN,MAP=APM,CPN=PCN,APC=180-APM-CPN=180-PAC-ACP,MAP+PCN=PAC+ACP=130=65,APC=115,故答案为:115【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键16、【解析】不等式kx+b-(x+a)0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答【详解】解:不等式的解集是故答案为:【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一
20、次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合17、12【解析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论【详解】观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,该玉米种子发芽的概率为1.2,故答案为1.2【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比三、解答题(共7小题,满分69分)18、(1)两次下降的百分率为10%; (2)要使每月销售这种商品的利润达到110元,且更有利于减少库存
21、,则商品应降价2.1元【解析】(1)设每次降价的百分率为 x,(1x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x40(1x)232.4x10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得 解得:1.1,2
22、.1,有利于减少库存,y2.1答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可19、(1)见解析;(2)140人;(1). 【解析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率【详解】(1)由统计图可得:(1分)(2分)(4分)(
23、5分)甲(人)01764乙(人)22584全体(%)512.5101517.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,25%=40,(1+2)12.5%=40,(7+5)10%=40,(6+8)15%=40,(4+4)17.5%40,故乙组得5分的人数统计有误,正确人数应为:4017.5%4=1(2)800(5%+12.5%)=140(人);(1)如图得:共有16种等可能的结果,所选两人正好分在一组的有4种情况,所选两人正好分在一组的概率是:【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件20、
24、2,1【解析】根据题意得出不等式组,解不等式组求得其解集即可【详解】根据题意得,解不等式,得:x1,解不等式,得:x1,则不等式组的解集为1x1,x可取的整数值是2,1【点睛】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键21、.【解析】先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取1,2,所以把x=0代入计算即可【详解】,=,当x=0时,原式=.22、(1)1.7km;(2)8.9km;【解析】(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷
25、达站C和运载火箭D两点间的距离【详解】解:(1)由题意可得,BOC=AOC=90,ACO=34,BCO=45,OC=5km,AO=OCtan34,BO=OCtan45,AB=OBOA=OCtan45OCtan34=OC(tan45tan34)=5(10.1)1.7km,即A,B两点间的距离是1.7km;(2)由已知可得,DOC=90,OC=5km,DCO=56,cosDCO= 即 sin34=cos56, 解得,CD8.9答:此时雷达站C和运载火箭D两点间的距离是8.9km【点睛】本题考查解直角三角形的应用仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答23、(1)
26、y=x2+2x3;(2);(3)详见解析.【解析】试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;(2)过点E作EFy轴,交AD与点F,过点C作CHEF,垂足为H设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据ACE的面积=EFA的面积-EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得ACE的最大值即可;(3)当AD为平行四边形的对角线时设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=
27、-2代入求得对应的y值,然后依据,可求得a的值;当AD为平行四边形的边时设点M的坐标为(-1,a)则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值试题解析:(1)A(1,0),抛物线的对称轴为直线x1,B(3,0),设抛物线的表达式为ya(x3)(x1),将点D(4,5)代入,得5a5,解得a1,抛物线的表达式为yx22x3;(2)过点E作EFy轴,交AD与点F,交x轴于点G,过点C作CHEF,垂足为H.设点E(m,m22m3),则F(m,m1)EFm1m22m3m23m4.SACESEFASEFCEFAGEFHCEFOA (m)2.ACE的面积的最大
28、值为;(3)当AD为平行四边形的对角线时:设点M的坐标为(1,a),点N的坐标为(x,y)平行四边形的对角线互相平分,解得x2,y5a,将点N的坐标代入抛物线的表达式,得5a3,解得a8,点M的坐标为(1,8),当AD为平行四边形的边时:设点M的坐标为(1,a),则点N的坐标为(6,a5)或(4,a5),将x6,ya5代入抛物线的表达式,得a536123,解得a16,M(1,16),将x4,ya5代入抛物线的表达式,得a51683,解得a26,M(1,26),综上所述,当点M的坐标为(1,26)或(1,16)或(1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形24、有48艘战舰和76架战机参加了此次阅兵.【解析】设有x艘战舰,y架战机参加了此次阅兵,根据题意列出方程组解答即可.【详解】设有x艘战舰,y架战机参加了此次阅兵,根据题意,得,解这个方程组,得 ,答:有48艘战舰和76架战机参加了此次阅兵.【点睛】此题考查二元一次方程组的应用,关键是根据题意列出等量关系进行解答.