辽宁省沈阳市沈河区重点中学2022-2023学年中考数学最后一模试卷含解析.doc

上传人:茅**** 文档编号:88310741 上传时间:2023-04-25 格式:DOC 页数:22 大小:967.50KB
返回 下载 相关 举报
辽宁省沈阳市沈河区重点中学2022-2023学年中考数学最后一模试卷含解析.doc_第1页
第1页 / 共22页
辽宁省沈阳市沈河区重点中学2022-2023学年中考数学最后一模试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《辽宁省沈阳市沈河区重点中学2022-2023学年中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省沈阳市沈河区重点中学2022-2023学年中考数学最后一模试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次3.82亿用科学记数法可以表示为( )A3.82107B3.82108C3.82109D0.38210102如图,在R

2、tABC中,B=90,A=30,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则EAD的余弦值是()ABCD3在实数3.5、0、4中,最小的数是()A3.5BC0D44我们知道:四边形具有不稳定性如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D处,则点C的对应点C的坐标为()A(,2)B(4,1)C(4,)D(4,)5下列计算错误的是()Aaa=a2B2a+a=3aC(a3)2=a5Da3a1=a46A、B两地相距180k

3、m,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h若设原来的平均车速为xkm/h,则根据题意可列方程为ABCD7方程有两个实数根,则k的取值范围是( )Ak1Bk1Ck1Dk18下列图形不是正方体展开图的是()ABCD9等腰三角形的一个外角是100,则它的顶角的度数为()A80B80或50C20D80或2010某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同设每个笔记本的价格为x元,则下列所列方程正确的是()ABCD11一组数据:3

4、,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是()A2B3C5D712如图,RtABC中,C=90,A=35,点D在边BC上,BD=2CD把ABC绕着点D逆时针旋转m(0m180)度后,如果点B恰好落在初始RtABC的边上,那么m=()A35B60C70D70或120二、填空题:(本大题共6个小题,每小题4分,共24分)13如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n个图案是由 个组成的14已知x=2是关于x的一元二次方程kx2+(k22)x+2k+4=0的一个根,则k的值为_15如图,以长为18的线段AB为直径的O交

5、ABC的边BC于点D,点E在AC上,直线DE与O相切于点D已知CDE=20,则的长为_16如图ABC中,C=90,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cosBDC=,则BC的长为_17用一个圆心角为120,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_18若,则_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;

6、若指针所指两个区域的数字之和为4的倍数,则乙获胜如果指针落在分割线上,则需要重新转动转盘请问这个游戏对甲、乙双方公平吗?说明理由20(6分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;从中任意抽取1个球恰好是红球的概率是 ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙你认为这个规则公平吗?请用列表法或画树状图法加以说明21(6分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从

7、A码头沿它的北偏西60的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45的方向求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号)22(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率23(8分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,

8、而是相交成任意的角(0180且90),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系

9、为 (2)若120,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 24(10分)如图,菱形ABCD中,已知BAD=120,EGF=60, EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);如图丙,在顶点G运动的过程中,若,探究线段EC、CF与B

10、C的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当2时,求EC的长度25(10分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表种产品种产品成本(万元件)25利润(万元件)13(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?26(12分)先化简,再在1,2,3中选取一个适当的数代入求值27(12分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整)请

11、你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据题目中的数据可以用科学记数法表示出来,本题得以解决【详解】解:3.82亿=3.82108,故选B【点睛】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法2、B【解析】试题解析:如图所示:设BC=x,在RtABC中,B=90,A=30,AC=2

12、BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EMAD于M,则AM=AD=x,在RtAEM中,cosEAD=;故选B【点睛】本题考查了解直角三角形、含30角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.3、D【解析】根据任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数3.5、0、4中,最小的数是4,故选D【点睛】掌握实数比较大小的法则4、D【解析】由已知条件得到AD=AD=4,AO=AB=2,根据勾股定理得到OD= =2,于是得到结论【

13、详解】解:AD=AD=4,AO=AB=1,OD=2,CD=4,CDAB,C(4,2),故选:D【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键5、C【解析】解:A、aa=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3a1=a4,正确,不合题意;故选C【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂6、A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可【详解】解:设原来的平均车速为xkm/h,则根

14、据题意可列方程为:=1故选A【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键7、D【解析】当k=1时,原方程不成立,故k1,当k1时,方程为一元二次方程此方程有两个实数根,解得:k1综上k的取值范围是k1故选D8、B【解析】由平面图形的折叠及正方体的展开图解题【详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体故选B【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.9、D【解析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答【详解】等腰三角形的一个外角是100,与这个外角相邻的内角为180

15、100=80,当80为底角时,顶角为180-160=20,该等腰三角形的顶角是80或20.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.10、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可考点:由实际问题抽象出分式方程11、C【解析】分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据根据定义即可求出答案详解:众数为5, x=5, 这组数据为:2,3,3,

16、5,5,5,7, 中位数为5, 故选C点睛:本题主要考查的是众数和中位数的定义,属于基础题型理解他们的定义是解题的关键12、D【解析】当点B落在AB边上时,根据DB=DB1,即可解决问题,当点B落在AC上时,在RTDCB2中,根据C=90,DB2=DB=2CD可以判定CB2D=30,由此即可解决问题【详解】当点B落在AB边上时,当点B落在AC上时,在中,C=90, ,故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.二、填空题:(本大题共6个小题,每小题4分,共24分)13、16,3n+1【解析】观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5

17、个和第n个图案的基础图形的个数即可【详解】由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+32,第5个图案基础图形的个数为4+3(51)=16,第n个图案基础图形的个数为4+3(n1)=3n+1.故答案为16,3n+1.【点睛】本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.14、1【解析】【分析】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2

18、k+4=0,整理得k2+1k=0,解得k1=0,k2=1,因为k0,所以k的值为1故答案为:1【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解15、7【解析】连接OD,由切线的性质和已知条件可求出AOD的度数,再根据弧长公式即可求出的长【详解】连接OD,直线DE与O相切于点D,EDO=90,CDE=20,ODB=180-90-20=70,OD=OB,ODB=OBD=70,AOD=140,的长=7,故答案为:7【点睛】本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出AOD的度数是解题的关键16、4【解析】试题

19、解析: 可设DC=3x,BD=5x,又MN是线段AB的垂直平分线,AD=DB=5x,又AC=8cm,3x+5x=8,解得,x=1,在RtBDC中,CD=3cm,DB=5cm, 故答案为:4cm.17、【解析】试题分析:,解得r=考点:弧长的计算18、【解析】=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、见解析【解析】解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为、乙获胜的概率为,这个游戏对甲、

20、乙双方不公平【点睛】考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比20、(1)必然,不可能;(2);(3)此游戏不公平【解析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案【详解】(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的

21、有8种情况,故选择甲的概率为:;则选择乙的概率为:,故此游戏不公平【点睛】此题主要考查了游戏公平性,正确列出树状图是解题关键21、小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里【解析】试题分析:过P作PMAB于M,求出PBM=45,PAM=30,求出PM,即可求出BM、AM、BP试题解析:如图:过P作PMAB于M,则PMB=PMA=90,PBM=9045=45,PAM=9060=30,AP=20,PM=AP=10,AM=PM=,BPM=PBM=45,PM=BM=10,AB=AM+MB=,BP=,即小船到B码头的距离是海里,A、B两个码头间的距离是()海里考点:解直角三

22、角形的应用-方向角问题22、(1)(2)【解析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可【详解】解: (1)甲投放的垃圾恰好是A类的概率是(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23、(1)(2,0),(1,),(1,);y=x; y=x,y=x+;(2)半径为4,M(,);1r+1【解析】(1)如图2-1中,作BEOD交OA于E

23、,CFOD交x轴于F求出OE、OF、CF、OD、BE即可解决问题;如图2-2中,作BEOD交OA于E,作PMOD交OA于M利用平行线分线段成比例定理即可解决问题;如图3-3中,作QMOA交OD于M利用平行线分线段成比例定理即可解决问题;(2)如图3中,作MFOA于F,作MNy轴交OA于N解直角三角形即可解决问题;如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、F求出FN=NE=1时,M的半径即可解决问题.【详解】(1)如图21中,作BEOD交OA于E,CFOD交x轴于F,由题意OC=CD=1,OA=BC=2,BD=OE=1,OD=CF=BE=,A(2,0),B(1,),C(1

24、,),故答案为(2,0),(1,),(1,);如图22中,作BEOD交OA于E,作PMOD交OA于M,ODBE,ODPM,BEPM,=,y=x;如图23中,作QMOA交OD于M,则有,y=x+,故答案为y=x,y=x+;(2)如图3中,作MFOA于F,作MNy轴交OA于N,=120,OMy轴,MOA=30,MFOA,OA=4,OF=FA=2,FM=2,OM=2FM=4,MNy轴,MNOM,MN=,ON=2MN=,M(,);如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、FMKx轴,=120,MKO=60,MK=OK=2,MKO是等边三角形,MN=,当FN=1时,MF=1,当E

25、N=1时,ME=+1,观察图象可知当M的半径r的取值范围为1r+1故答案为:1r+1【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题24、(1)证明见解析(2)线段EC,CF与BC的数量关系为:CECFBC.CECFBC(3)【解析】(1)利用包含60角的菱形,证明BAECAF,可求证;(2)由特殊到一般,证明CAECGE,从而可以得到EC、CF与BC的数量关系(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.【详解】解:(1)证明:四边形ABC

26、D是菱形,BAD120,BAC60,BACF60,AB=BC,AB=AC,BAEEACEACCAF60,BAE=CAF,在BAE和CAF中,,BAECAF,BECF,ECCFECBEBC,即ECCFBC; (2)知识探究:线段EC,CF与BC的数量关系为:CECFBC.理由:如图乙,过点A作AEEG,AFGF,分别交BC、CD于E、F类比(1)可得:EC+CF=BC,AEEG,CAECGE,同理可得:,即;CECFBC. 理由如下:过点A作AEEG,AFGF,分别交BC、CD于E、F.类比(1)可得:ECCFBC,AEEG,CAECAE,CECE,同理可得:CFCF,CECFCECF(CECF

27、)BC,即CECFBC; (3)连接BD与AC交于点H,如图所示:在RtABH中,AB8,BAC60,BHABsin608,AHCH=ABcos6084,GH1,CG413,t(t2),由(2)得:CECFBC,CEBC CF8.【点睛】本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形25、(1)生产产品8件,生产产品2件;(2)有两种方案:方案,种产品2件,则种产品8件;方案,种产品3件,则种产品7件【解析】(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14

28、万元”列出方程即可得出结论;(2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案【详解】解:(1)设生产种产品件,则生产种产品件,依题意得:,解得: ,则,答:生产产品8件,生产产品2件;(2)设生产产品件,则生产产品件,解得:因为为正整数,故或3;答:共有两种方案:方案,种产品2件,则种产品8件;方案,种产品3件,则种产品7件【点睛】此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键26、,当x=2时,原式=.【解析】试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代

29、入化简即可试题解析:原式=当x=2时,原式=.27、(1)见解析;(2)1;(3)估计全校达标的学生有10人【解析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数不合格人数的百分比,继而求出成绩优秀的人数(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200成绩达标的学生所占的百分比【详解】解:(1)成绩一般的学生占的百分比=120%50%=30%,测试的学生总数=2420%=120人,成绩优秀的人数=12050%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1(3)1200(50%+30%)=10(人)答:估计全校达标的学生有10人

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁