《辽宁省阜新市第二高级中学2023年高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省阜新市第二高级中学2023年高考仿真模拟数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1甲在微信群中发了一个6元“拼手气”红包,被乙丙丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )ABCD2已知函数,以下结论正确的个数为( )当时,函数的图象的对称中心为;当时,函数
2、在上为单调递减函数;若函数在上不单调,则;当时,在上的最大值为1A1B2C3D43抛物线的焦点为,点是上一点,则( )ABCD4若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是( )A1B-3C1或D-3或5为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( )A24B36C48D646已知函数,若,则a的取值范围为( )ABCD7已知函数,若成立,则的最小值是( )ABCD8已知角的终边经过点,则的值是A1或B或C1或D或9下列函数中,既是偶函数又
3、在区间上单调递增的是( )ABCD10中国古代数学名著九章算术中记载了公元前344年商鞅督造的一种标准量器商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为( ) A3B3.4C3.8D411已知,则的取值范围是()A0,1BC1,2D0,212集合,则=( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设数列的前n项和为,且,若,则_.14已知,为双曲线的左、右焦点,双曲线的渐近线上存在点满足,则的最大值为_15已知三棱锥中,则该三棱锥的外接球的表面积是_.16已知数列是等比数列,则_.三、解答题:共70分。解答应写
4、出文字说明、证明过程或演算步骤。17(12分)已知椭圆C:()的左、右焦点分别为,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.18(12分)在四棱锥的底面中,平面,是的中点,且()求证:平面;()求二面角的余弦值;()线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.19(12分)如图,在直三棱柱中,点P,Q分别为,的中点.求证:(1)PQ平面;(2)平面.20(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,)以坐标原点 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为(l)求直线的
5、普通方程和曲线C的直角坐标方程:(2)若直线与曲线C相交于A,B两点,且求直线 的方程21(12分)贫困人口全面脱贫是全面建成小康社会的标志性指标.党的十九届四中全会提出“坚决打赢脱贫攻坚战,建立解决相对贫困的长效机制”对当前和下一个阶段的扶贫工作进行了前瞻性的部署,即2020年要通过精准扶贫全面消除绝对贫困,实现全面建成小康社会的奋斗目标.为了响应党的号召,某市对口某贫困乡镇开展扶贫工作.对某种农产品加工生产销售进行指导,经调查知,在一个销售季度内,每售出一吨该产品获利5万元,未售出的商品,每吨亏损2万元.经统计,两市场以往100个销售周期该产品的市场需求量的频数分布如下表:市场:需求量(吨
6、)90100110频数205030市场:需求量(吨)90100110频数106030把市场需求量的频率视为需求量的概率,设该厂在下个销售周期内生产吨该产品,在、两市场同时销售,以(单位:吨)表示下一个销售周期两市场的需求量,(单位:万元)表示下一个销售周期两市场的销售总利润.(1)求的概率;(2)以销售利润的期望为决策依据,确定下个销售周期内生产量吨还是吨?并说明理由.22(10分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,ABC120,ABAEED2EF,EFAB,点G为CD中点,平面EAD平面ABCD.(1)证明:BDEG;(2)若三棱锥,求菱形ABCD的边长.参考答案一、选择
7、题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.2、C【解析】逐一分析选项,根据函数的对称中心判断;利用导数判断函数的单调性;先求函数的导数,若满足条件,则极值点必在区间;利用导数求函数在给定区间的最值.【详解】为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,
8、正确由题意知因为当时,又,所以在上恒成立,所以函数在上为单调递减函数,正确由题意知,当时,此时在上为增函数,不合题意,故令,解得因为在上不单调,所以在上有解,需,解得,正确令,得根据函数的单调性,在上的最大值只可能为或因为,所以最大值为64,结论错误故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.3、B【解析】根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.4、D【解析】由题得,解方程即得k的值.【详解】由题得,解方程即得k=-3或.故答案为:D【点睛】(1)本题主要考查点
9、到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2) 点到直线的距离.5、B【解析】根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.6、C【解析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式【详解】由得,在时,是增函数,是增函数,是增函数,是增函数,由得,解得故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题
10、时可先确定函数定义域,在定义域内求解7、A【解析】分析:设,则,把用表示,然后令,由导数求得的最小值详解:设,则,令,则,是上的增函数,又,当时,当时,即在上单调递减,在上单调递增,是极小值也是最小值,的最小值是故选A点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错8、B【解析】根据三角函数的定义求得后可得结论【详解】由题意得点与原点间的距离当时,当时,综上可得的值是或故选B【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横
11、坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可9、C【解析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.10、D【解析】根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属
12、综合基础题.11、D【解析】设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【详解】设,则,()22|224,所以可得:,配方可得,所以,又 则0,2故选:D【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、C【解析】先化简集合A,B,结合并集计算方法,求解,即可【详解】解得集合,所以,故选C【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】用换中的n,得,作差可得,从而数列是等比数列,再由即可得到答案.【详解】由,得,两式相减
13、,得,即;又,解得,所以数列为首项为-3、公比为3的等比数列,所以.故答案为:9.【点睛】本题考查已知与的关系求数列通项的问题,要注意n的范围,考查学生运算求解能力,是一道中档题.14、【解析】设,由可得,整理得,即点在以为圆心,为半径的圆上又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得15、【解析】将三棱锥补成长方体,设,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【详解】将三棱锥补成长方体,设,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,因此,三棱锥的外接球面积为.故答案为:.【点睛】本题考查三棱锥外接球
14、表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题.16、【解析】根据等比数列通项公式,首先求得,然后求得.【详解】设的公比为,由,得,故.故答案为:【点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线l的斜率为或【解析】(1)根据已知列出方程组即可解得椭圆方程;(2)设直线方程,与椭圆方程联立, 转化为,借助向量的数量积的坐标表示,及韦达定理即可求得结果.【详解】(1)由题意得解得故椭圆C的方程为.(2)直线l的方程为,设,则由方程组消去y得,所以,由,得,
15、所以,又所以,即所以,因此,直线l的斜率为或.【点睛】本题考查椭圆的标准方程,考查直线和椭圆的位置关系,考查学生的计算求解能力,难度一般.18、()详见解析;();()存在,点为线段的中点.【解析】()连结,则四边形为平行四边形,得到证明.()建立如图所示坐标系,平面法向量为,平面的法向量,计算夹角得到答案.()设,计算,根据垂直关系得到答案.【详解】()连结,则四边形为平行四边形.平面.()平面,四边形为正方形.所以,两两垂直,建立如图所示坐标系,则,设平面法向量为,则,连结,可得,又所以,平面,平面的法向量,设二面角的平面角为,则.()线段上存在点使得,设,所以点为线段的中点.【点睛】本题
16、考查了线面平行,二面角,根据垂直关系确定位置,意在考查学生的计算能力和空间想象能力.19、(1)见解析(2)见解析【解析】(1)取的中点D,连结,.根据线面平行的判定定理即得;(2)先证,和都是平面内的直线且交于点,由(1)得,再结合线面垂直的判定定理即得.【详解】(1)取的中点D,连结,.在中,P,D分别为,中点,且.在直三棱柱中,.Q为棱的中点,且.,.四边形为平行四边形,从而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D为中点,.由(1)知,.又,平面,平面,平面.【点睛】本题考查线面平行的判定定理,以及线面垂直的判定定理,难度不大.20、 (1)见解析(2) 【解析】(
17、1)将消去参数t可得直线的普通方程,利用x=cos, 可将极坐标方程转为直角坐标方程(2)利用直线被圆截得的弦长公式计算可得答案【详解】(1)由消去参数t得(),由得曲线C的直角坐标方程为:(2)由得,圆心为(1,0),半径为2,圆心到直线的距离为,即,整理得,所以直线l的方程为:【点睛】本题考查参数方程,极坐标方程与直角坐标方程之间的互化,考查直线被圆截得的弦长公式的应用,考查分析能力与计算能力,属于基础题21、(1);(2)吨,理由见解析【解析】(1)设“市场需求量为90,100,110吨”分别记为事件,“市场需求量为90,100,110吨”分别记为事件,由题可得,代入,计算可得答案;(2
18、)可取180,190,200,210,220,求出吨和吨时的期望,比较大小即可.【详解】(1)设“市场需求量为90,100,110吨”分别记为事件,“市场需求量为90,100,110吨”分别记为事件,则,;(2)可取180,190,200,210,220,当时,当时,.,时,平均利润大,所以下个销售周期内生产量吨.【点睛】本题考查离散型随机变量的期望,是中档题.22、(1)详见解析;(2).【解析】(1)取中点,连,可得,结合平面EAD平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB2EF,求出体积,建立的方程,即可求出结论.【详解】(1)取中点,连,底面ABCD为菱形,平面EAD平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,为中点,平面,平面平面,;(2)设菱形ABCD的边长为,则,所以菱形ABCD的边长为.【点睛】本题考查线线垂直的证明和椎体的体积,注意空间中垂直关系之间的相互转化,体积问题要熟练应用等体积方法,属于中档题.