辽宁省抚顺市一中2023年高三(最后冲刺)数学试卷含解析.doc

上传人:茅**** 文档编号:88310680 上传时间:2023-04-25 格式:DOC 页数:20 大小:2.03MB
返回 下载 相关 举报
辽宁省抚顺市一中2023年高三(最后冲刺)数学试卷含解析.doc_第1页
第1页 / 共20页
辽宁省抚顺市一中2023年高三(最后冲刺)数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《辽宁省抚顺市一中2023年高三(最后冲刺)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省抚顺市一中2023年高三(最后冲刺)数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知命题p:直线ab,且b平面,则a;命题q:直线l平面,任意直线m,则lm.下列命题为真命题的是( )ApqBp(非q)C(非p)qDp(非q)2,则与位置关系是 ()A平行B异面C相交D平行或异面或相交3某市政府决定派遣名干部(男女)分成两个小组

2、,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有( )种ABCD4“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员面向全社会的优质平台,现日益成为老百姓了解国家动态紧跟时代脉搏的热门该款软件主要设有“阅读文章”“视听学习”两个学习模块和“每日答题”“每周答题”“专项答题”“挑战答题”四个答题模块某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有( )A60B192C240D4325设等差数列的前项和为,若,则( )A21B22C11D126如图所示的茎叶

3、图为高三某班名学生的化学考试成绩,算法框图中输入的,为茎叶图中的学生成绩,则输出的,分别是() A,B,C,D,7已知函数在区间有三个零点,且,若,则的最小正周期为( )ABCD8已知是定义是上的奇函数,满足,当时, ,则函数在区间上的零点个数是( )A3B5C7D99双曲线的一条渐近线方程为,那么它的离心率为( )ABCD10过点的直线与曲线交于两点,若,则直线的斜率为( )ABC或D或11在复平面内,复数对应的点的坐标为( )ABCD12如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )A4BC2D二、填空题:本题共4小题,每小题5分,共2

4、0分。13九章算术是中国古代的数学名著,其中方田一章给出了弧田面积的计算公式如图所示,弧田是由圆弧AB和其所对弦AB围成的图形,若弧田的弧AB长为4,弧所在的圆的半径为6,则弧田的弦AB长是_,弧田的面积是_14函数的定义域为_.15如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为_. 16已知实数,满足约束条件则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项(1)求证:数列为等差数列;(2)设,求的前100项和18(12分)如图所示,在四棱锥中,底面为正方形,为的中点,为棱上的一点

5、.(1)证明:面面;(2)当为中点时,求二面角余弦值.19(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,()求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;()商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)()求的分布列;()若,求的数学期望的最大值.20(12分)已知等差数列的前n项和为,且,求数列的通项公式;求数列的前n项和21(12分)设的内角、的对

6、边长分别为、.设为的面积,满足.(1)求;(2)若,求的最大值.22(10分)已知矩形纸片中,将矩形纸片的右下角沿线段折叠,使矩形的顶点B落在矩形的边上,记该点为E,且折痕的两端点M,N分别在边上.设,的面积为S.(1)将l表示成的函数,并确定的取值范围;(2)求l的最小值及此时的值;(3)问当为何值时,的面积S取得最小值?并求出这个最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线

7、,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.2、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交选D3、C【解析】在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.【详解】两组至少都是人,则分组中两

8、组的人数分别为、或、,又因为名女干部不能单独成一组,则不同的派遣方案种数为.故选:C.【点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.4、C【解析】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法注意按“阅读文章”分类【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为故选:C【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法5、A【解析】由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数

9、列,可知也成等差数列,所以 ,即,解得.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.6、B【解析】试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,考点:程序框图、茎叶图7、C【解析】根据题意,知当时,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,当时,由对称轴可知,满足,即.

10、同理,满足,即,所以最小正周期为:.故选:C.【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.8、D【解析】根据是定义是上的奇函数,满足,可得函数的周期为3,再由奇函数的性质结合已知可得 ,利用周期性可得函数在区间上的零点个数【详解】是定义是上的奇函数,满足, ,可得,函数的周期为3,当时, ,令,则,解得或1,又函数是定义域为的奇函数,在区间上,有由,取,得 ,得,又函数是周期为3的周期函数,方程=0在区间上的解有 共9个,故选D【点睛】本题考查根的存在性及根的个数判断,考查抽象函数周期性的应用,考查逻辑思维能力与推理论证能力,属于中档题9、D【解析】根据双曲线

11、的一条渐近线方程为,列出方程,求出的值即可.【详解】双曲线的一条渐近线方程为,可得,双曲线的离心率.故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.10、A【解析】利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.11、C【解析】利用复数的运算法则、几何意义即可得出【详解】解:复数i(2+i)2i1对应的点的坐标为(

12、1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题12、A【解析】由,两边平方后展开整理,即可求得,则的长可求【详解】解:,故选:【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、6 129 【解析】过作,交于,先求得圆心角的弧度数,然后解解三角形求得的长.利用扇形面积减去三角形的面积,求得弧田的面积.【详解】如图,弧田的弧AB长为4,弧所在的圆的半径为6,过作,交于,根据圆的几何性质可知,垂直平分.AOB,可

13、得AOD,OA6,AB2AD2OAsin26,弧田的面积SS扇形OABSOAB46129故答案为:6,129【点睛】本小题主要考查弓形弦长和弓形面积的计算,考查中国古代数学文化,属于中档题.14、【解析】由题意得,解得定义域为15、【解析】由题意可知半球的半径与正四棱锥的高相等,可得正四棱锥的棱与半径的关系,进而可写出半球的半径与四棱锥体积的关系,进而求得结果.【详解】设所给半球的半径为,则四棱锥的高,则,由四棱锥的体积,半球的体积为:.【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体

14、中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.16、1【解析】作出约束条件表示的可行域,转化目标函数为,当目标函数经过点时,直线的截距最大,取得最大值,即得解.【详解】作出约束条件表示的可行域是以为顶点的三角形及其内部,转化目标函数为当目标函数经过点时,直线的截距最大此时取得最大值1故答案为:1【点睛】本题考查了线性规划问题,考查了学生转化划归,数形结合,数学运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析; (2).【解析】(1)利用已知条件化简出,当时

15、,当时,再利用进行化简,得出,即可证明出为等差数列;(2)根据(1)中,求出数列的通项公式,再化简出,可直接求出的前100项和【详解】解:(1)由题意知,即,当时,由式可得;又时,有,代入式得,整理得,是首项为1,公差为1的等差数列(2)由(1)可得,是各项都为正数,又,则,即:.的前100项和【点睛】本题考查数列递推关系的应用,通项公式的求法以及裂项相消法求和,考查分析解题能力和计算能力.18、(1)证明见解析;(2).【解析】(1)要证明面面,只需证明面即可;(2)以为坐标原点,以,分别为,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.【详解】证明:(1)因为底面为正方形,所

16、以又因为,满足,所以又,面,面,所以面.又因为面,所以,面面.(2)由(1)知,两两垂直,以为坐标原点,以,分别为,轴建系如图所示,则,,,则,.所以,设面法向量为,则由得,令得,即;同理,设面的法向量为,则由得,令得,即,所以,设二面角的大小为,则所以二面角余弦值为.【点睛】本题考查面面垂直的证明以及利用向量法求二面角,考查学生的运算求解能力,此类问题关键是准确写出点的坐标,是一道中档题.19、()0.288()()见解析()数学期望的最大值为280【解析】()根据题意,设购买该商品的3位顾客中,选择分2期付款的人数为,由独立重复事件的特点得出,利用二项分布的概率公式,即可求出结果;()()

17、依题意,的取值为200,250,300,350,400,根据离散型分布求出概率和的分布列;()由题意知,解得,根据的分布列,得出的数学期望,结合,即可算出的最大值.【详解】解:()设购买该商品的3位顾客中,选择分2期付款的人数为,则,则,故购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.()()依题意,的取值为200,250,300,350,400,的分布列为:2002503003504000.16(),由题意知,又,即,解得,当时,的最大值为280,所以的数学期望的最大值为280.【点睛】本题考查独立重复事件和二项分布的应用,以及离散型分布列和数学期望,考查计算能力.20、

18、(1);(2).【解析】先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果利用裂项相消法求出数列的和【详解】解:设公差为d的等差数列的前n项和为,且,则有:,解得:,所以:由于:,所以:,则:,则:,【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型21、 (1);(2).【解析】(1)根据条件形式选择,然后利用余弦定理和正弦定理化简,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分别用角的三角函数值表示出,即可得到,再利用三角恒等变换,化简为,即可求出最大值【详解】(1),即,变形得:

19、,整理得:,又,;(2),由正弦定理知,当且仅当时取最大值故的最大值为.【点睛】本题主要考查正弦定理,余弦定理,三角形面积公式的应用,以及利用三角恒等变换求函数的最值,意在考查学生的转化能力和数学运算能力,属于基础题22、(1)(2),的最小值为.(3)时,面积取最小值为【解析】(1),利用三角函数定义分别表示,且,即可得到关于的解析式;,则,即可得到的范围;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,设为,令,则,即可设,利用导函数判断函数的单调性,即可求得的最大值,进而求解;(3)由题,则,设,利用导函数求得的最大值,即可求得的最小值.【详解】解:(1),故.因为,所以,,所以,又,则,所以,所以(2)记,则,设,则,记,则,令,则,当时,;当时,所以在上单调递增,在上单调递减,故当时取最小值,此时,的最小值为.(3)的面积,所以,设,则,设,则,令,所以当时,;当时,所以在上单调递增,在上单调递减,故当,即时,面积取最小值为【点睛】本题考查三角函数定义的应用,考查利用导函数求最值,考查运算能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁