《河南省周口市项城市(正泰博文校2022-2023学年中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《河南省周口市项城市(正泰博文校2022-2023学年中考数学四模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABC中,AB=AC,BAC=90,直角EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:APECPF;AE=CF;EAF是等腰直角三角形;SABC=
2、2S四边形AEPF,上述结论正确的有( )A1个B2个C3个D4个22019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A32,31B31,32C31,31D32,353如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB=8,CD=2,则EC的长为()AB8CD4矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH若BC=EF=2,CD=CE=1,则GH=()A1BCD5实数a、b在数轴上的对应点的位置如图所示,则正确的结论是()Aa
3、1Bab0Cab0Da+b06为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A140元B150元C160元D200元7如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为(其中045),旋转后记作射线AB,射线AB分别交矩形CDEF的边CF,DE于点G,H若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()ABCD8如图,在RtABC中
4、,B90,AB6,BC8,点D在BC上,以AC为对角线的所有ADCE中,DE的最小值是( )A4B6C8D109一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()ABCD102的绝对值是( )A2BCD11如图,菱形ABCD的对角线相交于点O,过点D作DEAC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,ABC=60,则AE的长为()ABCD12如图,O的半径为1,ABC是O的内接三角形,连接OB、OC,若BAC与BOC互补,则弦BC的长为()AB2C3D1.5二、填空题:(本大题共6个小题,每小题
5、4分,共24分)13函数的自变量的取值范围是14如图,四边形ABCD是O的内接四边形,若BOD=88,则BCD的度数是_15若方程 x2+(m21)x+1+m0的两根互为相反数,则 m_16如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么点A4n+1(n为自然数)的坐标为 (用n表示)17有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 18如图,ab,1=40,2=80,则3=度三、解答题:(本大题共9个
6、小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)解方程:1+20(6分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 ;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数21(6分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且
7、与AB、CD分别相交于点E、F,连接EC、AF(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由22(8分)清朝数学家梅文鼎的方程论中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?23(8分)如图1,在RtABC中,C=90,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE将ADE绕点A逆时针方向旋转,记旋转角为(
8、1)问题发现当=0时,= ;当=180时,= (2)拓展探究试判断:当0360时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决在旋转过程中,BE的最大值为 ;当ADE旋转至B、D、E三点共线时,线段CD的长为 24(10分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元 (1)求A、B两种钢笔每支各多少元? (2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案? (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文
9、具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?25(10分)如图,在AOB中,ABO=90,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且BOD的面积SBOD=1求反比例函数解析式;求点C的坐标26(12分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G
10、,求证:点G在BD上27(12分)如图,在RtABC与RtABD中,ABC=BAD=90,AD=BC,AC,BD相交于点G,过点A作AEDB交CB的延长线于点E,过点B作BFCA交DA的延长线于点F,AE,BF相交于点H图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在RtABC的边长之间再添加一个什么条件?请你写出这个条件(不必证明)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】利用“角边角”证明APE和CPF全等,根据全等三角形的
11、可得AE=CF,再根据等腰直角三角形的定义得到EFP是等腰直角三角形,根据全等三角形的面积相等可得APE的面积等于CPF的面积相等,然后求出四边形AEPF的面积等于ABC的面积的一半【详解】AB=AC,BAC=90,点P是BC的中点,APBC,AP=PC,EAP=C=45,APF+CPF=90,EPF是直角,APF+APE=90,APE=CPF,在APE和CPF中,APECPF(ASA),AE=CF,故正确;AEPCFP,同理可证APFBPE,EFP是等腰直角三角形,故错误;APECPF,SAPE=SCPF,四边形AEPF=SAEP+SAPF=SCPF+SBPE=SABC故正确,故选C【点睛】
12、本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出APE=CPF,从而得到APE和CPF全等是解题的关键,也是本题的突破点2、C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数所以本题这组数据的中位数是1,众数是1故选C3、D【解析】O的半径OD弦AB于点C,AB=8,AC=AB=1设O的半径为r,则OC=r2,在RtAOC中,AC=1,O
13、C=r2,OA2=AC2+OC2,即r2=12+(r2)2,解得r=2AE=2r=3连接BE,AE是O的直径,ABE=90在RtABE中,AE=3,AB=8,在RtBCE中,BE=6,BC=1,故选D4、C【解析】分析:延长GH交AD于点P,先证APHFGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案详解:如图,延长GH交AD于点P,四边形ABCD和四边形CEFG都是矩形,ADC=ADG=CGF=90,AD=BC=2、GF=CE=1,ADGF,GFH=PAH,又H是AF的中点,AH=FH,在APH和FGH中,APHFGH(ASA),AP=GF=1,GH=PH=PG
14、,PD=ADAP=1,CG=2、CD=1,DG=1,则GH=PG=,故选:C点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点5、C【解析】直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案【详解】选项A,从数轴上看出,a在1与0之间,1a0,故选项A不合题意;选项B,从数轴上看出,a在原点左侧,b在原点右侧,a0,b0,ab0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,ab,即ab0,故选项C符合题意;选项D,从数轴上看出,a在1与0之间,1b2,|a|b|,a0,b0,所以a+b|b|a|0,故选项D不合题意故选:C
15、【点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.6、B【解析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x10解得:x=150,即:小慧同学不凭卡购书的书价为150元故选B考点:一元一次方程的应用7、D【解析】四边形CDEF是矩形,CFDE,ACGADH,AC=CD=1,AD=2,DH=2x,DE=2,y=22x,045,0x1,故选D【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出ACGADH.8、B【解析】平行四边形ADCE的对角线的交点是AC
16、的中点O,当ODBC时,OD最小,即DE最小,根据三角形中位线定理即可求解【详解】平行四边形ADCE的对角线的交点是AC的中点O,当ODBC时,OD最小,即DE最小。ODBC,BCAB,ODAB,又OC=OA,OD是ABC的中位线,OD=AB=3,DE=2OD=6.故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.9、B【解析】根据题中给出的函数图像结合一次函数性质得出a0,b0,再由反比例函数图像性质得出c0,从而可判断二次函数图像开口向下,对称轴:0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:一次函数y=ax+b图像过一、二、四, a
17、0,b0, 又反比例 函数y=图像经过二、四象限, c0, 二次函数对称轴:0, 二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键10、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点2到原点的距离是2,所以2的绝对值是2,故选A11、C【解析】在菱形ABCD中,OC=AC,ACBD,DE=OC,DEAC,四边形OCED是平行四边形,ACBD,平行四边形
18、OCED是矩形,在菱形ABCD中,ABC=60,ABC为等边三角形,AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在RtACE中,由勾股定理得:AE=;故选C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出COD=90,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.12、A【解析】分析:作OHBC于H,首先证明BOC=120,在RtBOH中,BH=OBsin60=1,即可推出BC=2BH=,详解:作OHBC于HBOC=2BAC,BOC+BAC=180,BOC=120
19、,OHBC,OB=OC,BH=HC,BOH=HOC=60,在RtBOH中,BH=OBsin60=1,BC=2BH=.故选A点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线二、填空题:(本大题共6个小题,每小题4分,共24分)13、x1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X10,即x1那么函数y=的自变量的取值范围是x114、136【解析】由圆周角定理得,A=BOD=44,由圆内接四边形的性质得,BCD=180-A=136【点睛】本题考查了1.圆周角定理;2. 圆内接四边形的性质.15、1【解析】根据“方程 x2+(m21)x
20、+1+m0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可【详解】方程 x2+(m21)x+1+m0 的两根互为相反数,1m20,解得:m1 或1,把 m1代入原方程得:x2+20,该方程无解,m1不合题意,舍去,把 m1代入原方程得: x20,解得:x1x20,(符合题意),m1,故答案为1【点睛】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.16、(2n,1)【解析】试题分析:根据图形分别求出n=
21、1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,41+1=5,点A5(2,1),n=2时,42+1=9,点A9(4,1),n=3时,43+1=13,点A13(6,1),点A4n+1(2n,1)17、【解析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是故答案为【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.18、120【解析
22、】如图,ab,2=80,4=2=80(两直线平行,同位角相等)3=1+4=40+80=120故答案为120三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、无解【解析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x23xx23x18,解得:x3,经检验x3是增根,分式方程无解【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.20、(1)100;(2)作图见解析;(3)1【解析】试题分析:(1)根据百分比= 计算即可;(2)求出“打球”和“其他”的人数,
23、画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=3030%=100,故答案为100;(2)其他有10010%=10人,打球有100302010=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为200040%=1人21、(1)见解析;(2)AFCE,见解析.【解析】(1)直接利用全等三角三角形判定与性质进而得出FOCEOA(ASA),进而得出答案; (2)利用平行四边形的判定与性质进而得出答案【详解】(1)证明:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,AO=CO,DCAB,DC=AB,FCA=CAB,在F
24、OC和EOA中,FOCEOA(ASA),FC=AE,DC-FC=AB-AE,即DF=EB;(2)AFCE,理由:FC=AE,FCAE,四边形AECF是平行四边形,AFCE【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出FOCEOA(ASA)是解题关键22、每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩【解析】设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解【详解】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩可列
25、方程组为 解得 答:每亩山田相当于实田0.9亩,每亩场地相当于实田亩23、(1);(2)无变化,证明见解析;(3)2+2 +1或1.【解析】(1)先判断出DECB,进而得出比例式,代值即可得出结论;先得出DEBC,即可得出,再用比例的性质即可得出结论;(2)先CAD=BAE,进而判断出ADCAEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD【详解】解:(1)当=0时,在RtABC中,AC=BC=2,A=B=45,AB=2,AD=DE=AB=,AED=A=45,ADE=90,DECB,故答案为,当=180时,如图1,DEBC,即:
26、,故答案为;(2)当0360时,的大小没有变化,理由:CAB=DAE,CAD=BAE,ADCAEB,;(3)当点E在BA的延长线时,BE最大,在RtADE中,AE=AD=2,BE最大=AB+AE=2+2;如图2,当点E在BD上时,ADE=90,ADB=90,在RtADB中,AB=2,AD=,根据勾股定理得,BD=,BE=BD+DE=+,由(2)知,CD=+1,如图3, 当点D在BE的延长线上时,在RtADB中,AD=,AB=2,根据勾股定理得,BD=,BE=BDDE=,由(2)知,CD=1故答案为 +1或1【点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的
27、判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DEBC,解(2)的关键是判断出ADCAEB,解(3)关键是作出图形求出BD,是一道中等难度的题目24、(1) A种钢笔每只15元 B种钢笔每只20元;(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3) 定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得 ,解得: ,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,42.4z45,z是整数z=43,44,90-z=47,
28、或46;共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a+28a+680=-4(a-)+729,-40,W有最大值,a为正整数,当a=3,或a=4时,W最大,W最大=-4(3-)+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元25、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)【解析】(1)由SBOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;(2)由已知可确定
29、A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标【详解】(1)ABO=90,OB=1,SBOD=1,OBBD=1,解得BD=2,D(1,2)将D(1,2)代入y=,得2=,k=8,反比例函数解析式为y=;(2)ABO=90,OB=1,AB=8,A点坐标为(1,8),设直线OA的解析式为y=kx,把A(1,8)代入得1k=8,解得k=2,直线AB的解析式为y=2x,解方程组得或,C点坐标为(2,1).26、见解析【解析】先连接AC,根据菱形性质证明EACFCA,然后结合中垂线的性质即可证明点G在BD上.【详解】证明:如图,连接AC.四边形ABCD是菱形,DA=
30、DC,BD与AC互相垂直平分,EAC=FCA. AE=CF,AC=CA, EACFCA, ECA=FAC, GA=GC, 点G在AC的中垂线上,点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.27、 (1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC【解析】试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如ABCBAD,利用SAS可证明(2)由已知可得四边形AHBG是平行四边形,由(1)可知ABD=BAC,得到GAB为等腰三角形,AHBG的两邻边相等,从而得到平行四边形AHBG是菱形试题解析:(1)解:ABCBAD证明:AD=BC,ABC=BAD=90,AB=BA,ABCBAD(SAS)(2)证明:AHGB,BHGA,四边形AHBG是平行四边形ABCBAD,ABD=BACGA=GB平行四边形AHBG是菱形(3)需要添加的条件是AB=BC点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一