湖南省岳阳市九校2023届中考试题猜想数学试卷含解析.doc

上传人:lil****205 文档编号:88310530 上传时间:2023-04-25 格式:DOC 页数:16 大小:558.50KB
返回 下载 相关 举报
湖南省岳阳市九校2023届中考试题猜想数学试卷含解析.doc_第1页
第1页 / 共16页
湖南省岳阳市九校2023届中考试题猜想数学试卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《湖南省岳阳市九校2023届中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省岳阳市九校2023届中考试题猜想数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,将ABC绕点C顺时针旋转90得到EDC若点A,D,E在同一条直线上,ACB=20,则ADC的度数是A55B60C65D702下列计算正确的是()A=B =2Ca6a2=a3D(a2)3=a63已知,如图,AB/CD,DCF=1

2、00,则AEF的度数为 ( )A120B110C100D804已知直线mn,将一块含30角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若125,则2的度数是()A25B30C35D555山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有()ABCD6若0m2,则关于x的一元二次方程(x+m)(x+3m)3mx+37根的情况是()A无实数根B有两个正根C有两个根,且都大于3mD有两个根,其中

3、一根大于m7下列计算正确的是()Aa2a3a6B(a2)3a6Ca6a2a4Da5+a5a108在实数0,4中,最小的数是( )A0BCD49如图,在坐标系中放置一菱形OABC,已知ABC=60,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60,连续翻转2017次,点B的落点依次为B1,B2,B3,则B2017的坐标为()A(1345,0)B(1345.5,)C(1345,)D(1345.5,0)10已知关于x的一元二次方程mx22x1=0有两个不相等的实数根,则m的取值范围是( ).Am1且m0Bm1且m0Cm1Dm1二、填空题(共7小题,每小题3分,满分21分

4、)112011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为 辆12从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是_13关于x的一元二次方程x2+4xk=0有实数根,则k的取值范围是_14因式分解:a2b2abb 15在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_个16如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积

5、为_17如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA5,OC1若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_三、解答题(共7小题,满分69分)18(10分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图)已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30,在地面的点F处,测得标语牌点A的仰角为75,且点E,F,B,C在同一直线上,求点E与点F之间的距离(计算结果精确到0.1m,参考数据:1.41,1.73)19(5分)如图1,在矩形ABCD中,AD=4,AB=2,

6、将矩形ABCD绕点A逆时针旋转(090)得到矩形AEFG延长CB与EF交于点H (1)求证:BH=EH;(2)如图2,当点G落在线段BC上时,求点B经过的路径长20(8分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,(1)求出的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PCPD的最小值(不必说明理由)21(10分)如图,在RtABC中,C90,AD平分BAC交BC于点D,O为AB上一点,经过点A,D的O分别交AB,AC于点E,F

7、,连接OF交AD于点G求证:BC是O的切线;设ABx,AFy,试用含x,y的代数式表示线段AD的长;若BE8,sinB,求DG的长,22(10分)阅读下列材料,解答下列问题:材料1把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程公式法(平方差公式、完全平方公式)是因式分解的一种基本方法如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,

8、再减去这项,使整个式子的值不变,于是有:x2+2ax3a2x2+2ax+a2a23a2(x+a)2(2a)2(x+3a)(xa)材料2因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+yA,则原式A2+2A+1(A+1)2再将“A”还原,得:原式(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c26c+8分解因式;(2)结合材料1和材料2完成下面小题:分解因式:(ab)2+2(ab)+1;分解因式:(m+n)(m+n4)+323(12分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C

9、测得教学楼顶部D的仰角为18,教学楼底部B的俯角为20,量得实验楼与教学楼之间的距离AB=30m(1)求BCD的度数(2)求教学楼的高BD(结果精确到0.1m,参考数据:tan200.36,tan180.32)24(14分)已知关于x的一元二次方程3x26x+1k=0有实数根,k为负整数求k的值;如果这个方程有两个整数根,求出它的根参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据旋转的性质和三角形内角和解答即可【详解】将ABC绕点C顺时针旋转90得到EDCDCE=ACB=20,BCD=ACE=90,AC=CE,ACD=90-20=70,点A,D,E在同一条

10、直线上,ADC+EDC=180,EDC+E+DCE=180,ADC=E+20,ACE=90,AC=CEDAC+E=90,E=DAC=45在ADC中,ADC+DAC+DCA=180,即45+70+ADC=180,解得:ADC=65,故选C【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答2、D【解析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算【详解】A. 不是同类二次根式,不能合并,故A选项错误;B.=22,故B选项错误;C.a6a2=a4a3,故C选项错误;D.(a2)3=a6,故D选项正确故选D.【点睛】本题主要考查了二次根式的运算

11、法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.3、D【解析】先利用邻补角得到DCE=80,然后根据平行线的性质求解【详解】DCF=100,DCE=80,ABCD,AEF=DCE=80故选D【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等4、C【解析】根据平行线的性质即可得到3的度数,再根据三角形内角和定理,即可得到结论【详解】解:直线mn,3125,又三角板中,ABC60,2602535,故选C【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键5、D【解析】根据轴对称图形的概念求解【详解】A、不是轴对称

12、图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确故选D【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合6、A【解析】先整理为一般形式,用含m的式子表示出根的判别式,再结合已知条件判断的取值范围即可.【详解】方程整理为,方程没有实数根,故选A【点睛】本题考查了一元二次方程根的判别式,当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根7、B【解析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解【详解】A、a2a3=a5,错误;B、(a2)3=

13、a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B【点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错8、D【解析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】正数大于0和一切负数,只需比较-和-1的大小,|-|-1|,最小的数是-1故选D【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小9、B【解析】连接AC,如图所示四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边

14、三角形AC=ABAC=OAOA=1,AC=1画出第5次、第6次、第7次翻转后的图形,如图所示由图可知:每翻转6次,图形向右平移23=3366+1,点B1向右平移1322(即3362)到点B3B1的坐标为(1.5, ),B3的坐标为(1.5+1322,),故选B点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.10、A【解析】一元二次方程mx22x1=0有两个不相等的实数根,m0,且224m(1)0,解得:m1且m0.故选A.【点睛】本题考查一元二次方程ax2+bx+c=0(a0)根的判别式:(1)当=b24ac0时,方程有两个不相等的实数根;(2)当=b24ac

15、=0时,方程有有两个相等的实数根;(3)当=b24ac0时,方程没有实数根.二、填空题(共7小题,每小题3分,满分21分)11、2.852【解析】根据科学记数法的定义,科学记数法的表示形式为a20n,其中2|a|20,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于2还是小于2当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,n为它第一个有效数字前0的个数(含小数点前的2个0)【详解】解:28500000一共8位,从而28500000=2.85212、【解析】根据合数定义,用合数的个数除以数的总数即为所求的概率【详解】在1,2,3,4,5,6,7,8这

16、八个数中,合数有4、6、8这3个,这个数恰好是合数的概率是故答案为:【点睛】本题考查了概率的求法如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到合数的个数是解题的关键13、k1【解析】分析:根据方程的系数结合根的判别式0,即可得出关于k的一元一次不等式,解之即可得出结论详解:关于x的一元二次方程x2+1x-k=0有实数根,=12-11(-k)=16+1k0,解得:k-1故答案为k-1点睛:本题考查了根的判别式,牢记“当0时,方程有实数根”是解题的关键14、b2【解析】该题考查因式分解的定义首先可以提取一个公共项b,所以a2b2abbb(a

17、22a1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b2abbb(a22a1)=b215、1【解析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为200.3=6(个),则红球大约有20-6=1个,故答案为:1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个

18、事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确16、2【解析】过点F作FEAD于点E,则AE=AD=AF,故AFE=BAF=30,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADFSADF可得出其面积,再根据S阴影=2(S扇形BAFS弓形AF)即可得出结论【详解】如图所示,过点F作FEAD于点E,正方形ABCD的边长为2,AE=AD=AF=1,AFE=BAF=30,EF=S弓形AF=S扇形ADFSADF=, S阴影=2(S扇形BAFS弓形AF)=2=2()=【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力17、【

19、解析】直接利用相似三角形的判定与性质得出ONC1三边关系,再利用勾股定理得出答案【详解】过点C1作C1Nx轴于点N,过点A1作A1Mx轴于点M,由题意可得:C1NOA1MO90,121,则A1OMOC1N,OA5,OC1,OA15,A1M1,OM4,设NO1x,则NC14x,OC11,则(1x)2+(4x)29,解得:x(负数舍去),则NO,NC1,故点C的对应点C1的坐标为:(,)故答案为(,)【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出A1OMOC1N是解题关键三、解答题(共7小题,满分69分)18、7.3米【解析】:如图作FHAE于H由题意可知HAF=HFA=45,推出A

20、H=HF,设AH=HF=x,则EF=2x,EH=x,在RtAEB中,由E=30,AB=5米,推出AE=2AB=10米,可得x+x =10,解方程即可【详解】解:如图作FHAE于H由题意可知HAF=HFA=45,AH=HF,设AH=HF=x,则EF=2x,EH=x,在RtAEB中,E=30,AB=5米,AE=2AB=10米,x+x=10,x=55,EF=2x=10107.3米,答:E与点F之间的距离为7.3米【点睛】本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.19、(1)见解析;(2)B点经过的路径长为【解析】(1)、连接AH,根据

21、旋转图形的性质得出AB=AE,ABH=AEH=90,根据AH为公共边得出RtABH和RtAEH全等,从而得出答案;(2)、根据题意得出EAB的度数,然后根据弧长的计算公式得出答案【详解】(1)、证明:如图1中,连接AH,由旋转可得AB=AE,ABH=AEH=90,又AH=AH,RtABHRtAEH,BH=EH(2)、解:由旋转可得AG=AD=4,AE=AB,EAG=BAC=90,在RtABG中,AG=4,AB=2,cosBAG=,BAG=30,EAB=60 ,弧BE的长为=,即B点经过的路径长为【点睛】本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型明白旋转图形的性质是

22、解决这个问题的关键20、(2)2;(2)y=x+2;(3)【解析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD的长【详解】解:(2)反比例函数y=的图象上的点横坐标与纵坐标的积相同,A(2,2),B(-2,-2),C(3,2)k=2(2)设直线AB的解析式为y=mx+n,则有,解得,直线AB的解析式为y=x+2(3)C、D关于直线AB对称,D(0,4)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD=【点睛】本题考查反比例函

23、数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题21、 (1)证明见解析;(2)AD=;(3)DG=【解析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对

24、的圆周角为直角,得到EF与BC平行,得到sinAEF=sinB,进而求出DG的长即可【详解】(1)如图,连接OD,AD为BAC的角平分线,BAD=CAD,OA=OD,ODA=OAD,ODA=CAD,ODAC,C=90,ODC=90,ODBC,BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,FDC=DAF,CDA=CFD,AFD=ADB,BAD=DAF,ABDADF,即AD2=ABAF=xy,则AD= ;(3)连接EF,在RtBOD中,sinB=,设圆的半径为r,可得,解得:r=5,AE=10,AB=18,AE是直径,AFE=C=90,EFBC,AEF=B,sinAEF=,AF=A

25、EsinAEF=10=,AFOD,即DG=AD,AD=,则DG=【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键22、(1)(c-4)(c-2);(2)(a-b+1)2;(m+n-1)(m+n-3).【解析】(1)根据材料1,可以对c2-6c+8分解因式;(2)根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式【详解】(1)c2-6c+8 =c2-6c+32-32+8 =(c-3)2-1 =(c-3+1)(c

26、-3+1)=(c-4)(c-2);(2)(a-b)2+2(a-b)+1 设a-b=t,则原式=t2+2t+1=(t+1)2,则(a-b)2+2(a-b)+1=(a-b+1)2;(m+n)(m+n-4)+3 设m+n=t,则t(t-4)+3 =t2-4t+3 =t2-4t+22-22+3 =(t-2)2-1 =(t-2+1)(t-2-1)=(t-1)(t-3),则(m+n)(m+n-4)+3=(m+n-1)(m+n-3)【点睛】本题考查因式分解的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解23、(1)38;(2)20.4m【解析】(1)过点C作CE与BD垂直,根据题意

27、确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高【详解】(1)过点C作CEBD,则有DCE=18,BCE=20,BCD=DCE+BCE=18+20=38;(2)由题意得:CE=AB=30m,在RtCBE中,BE=CEtan2010.80m,在RtCDE中,DE=CDtan189.60m,教学楼的高BD=BE+DE=10.80+9.6020.4m,则教学楼的高约为20.4m【点睛】本题考查了解直角三角形的应用仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活

28、运用相关知识是解题的关键.24、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁