河北省廊坊市文安县2022-2023学年中考联考数学试卷含解析.doc

上传人:lil****205 文档编号:88310420 上传时间:2023-04-25 格式:DOC 页数:21 大小:943KB
返回 下载 相关 举报
河北省廊坊市文安县2022-2023学年中考联考数学试卷含解析.doc_第1页
第1页 / 共21页
河北省廊坊市文安县2022-2023学年中考联考数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《河北省廊坊市文安县2022-2023学年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省廊坊市文安县2022-2023学年中考联考数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一次函数满足,且随的增大而减小,则此函数的图象不经过( )A第一象限B第二象限C第三象限D第四象限2如图,已知l1l2,A=40,1=60,则2的度数为( )A40B60C80D1003按一定规律排列的一列数依次为:,1,、,按此规律,这列数中的第100个数是()ABCD4如图,若ab,1=

2、60,则2的度数为()A40B60C120D1505如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,BEF=2BAC,FC=2,则AB的长为()A8B8C4D66某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为ABx(x+1)=1980C2x(x+1)=1980Dx(x-1)=19807如图,AB是的直径,点C,D在上,若,则的度数为ABCD8一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠

3、卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )A120元B125元C135元D140元9如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15到AC的位置,此时露在水面上的鱼线BC长度是()A3mB mC mD4m10如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F, DE=2,则EF:BE= _ 。12已知线段a4,线段b9,则a,b的比例中项是_13如图,AC是以AB为直

4、径的O的弦,点D是O上的一点,过点D作O的切线交直线AC于点E,AD平分BAE,若AB=10,DE=3,则AE的长为_14写出经过点(0,0),(2,0)的一个二次函数的解析式_(写一个即可)15如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM若BAD=120,AE=2,则DM=_16如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PCx轴,垂足为C,把ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与ABP相似,则所有满足此条件的点P的坐标为

5、_17如图,AB是圆O的直径,AC是圆O的弦,AB=2,BAC=30在图中画出弦AD,使AD=1,则CAD的度数为_三、解答题(共7小题,满分69分)18(10分)观察规律并填空._(用含n的代数式表示,n 是正整数,且 n 2)19(5分)列方程解应用题:某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完售完这两批衬衫,商场共盈利多少元?20(8分)如图,已知四边形ABCD是平行四边形,延长BA至点

6、E,使AE=AB,连接DE,AC(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长21(10分)如图所示,点C为线段OB的中点,D为线段OA上一点连结AC、BD交于点P(问题引入)(1)如图1,若点P为AC的中点,求的值温馨提示:过点C作CEAO交BD于点E(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:(问题解决)(3)如图2,若AO=BO,AOBO,求tanBPC的值22(10分)(1)观察猜想如图点B、A、C在同一条直线上,DBBC,ECBC且DAE=90,AD=AE,则BC、BD、CE之间的数量关

7、系为_;(2)问题解决如图,在RtABC中,ABC=90,CB=4,AB=2,以AC为直角边向外作等腰RtDAC,连结BD,求BD的长;(3)拓展延伸如图,在四边形ABCD中,ABC=ADC=90,CB=4,AB=2,DC=DA,请直接写出BD的长23(12分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角=37,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37=,cos37=,tan37=)(1)求把手端点A到BD的距离;(2)求CH的长.24(14分)近年来,共享单车服务的推出(如图1),极大的方便了城市公

8、民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC直线l,BCE=71,CE=54cm(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E,求EE的长(结果精确到0.1cm)(参考数据:sin710.95,cos710.33,tan712.90)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:根据y随x的增大而减小得:k0,又kb0,则b0,故此函数的图象经过第二、三、

9、四象限,即不经过第一象限故选A考点:一次函数图象与系数的关系2、D【解析】根据两直线平行,内错角相等可得3=1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:l1l2,3=1=60,2=A+3=40+60=100故选D【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键3、C【解析】根据按一定规律排列的一列数依次为:,1,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、,型;分子为型,可得第100个数为【详解】按一定规律排列的一列数依次为:,1,按此规律,奇数项为负,偶数项为正,分母为3、7、

10、9、,型;分子为型,可得第n个数为,当时,这个数为,故选:C【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.4、C【解析】如图:1=60,3=1=60,又ab,2+3=180,2=120,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.5、D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BOEF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得BAC=ABO,再根据三角形的内角和定理列式求出ABO=30,即BA

11、C=30,根据直角三角形30角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB,BE=BF,OE=OF,BOEF,在RtBEO中,BEF+ABO=90,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,BAC=ABO,又BEF=2BAC,即2BAC+BAC=90,解得BAC=30,FCA=30,FBC=30,FC=2,BC=2,AC=2BC=4,AB=6,故选D点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出BAC=30

12、是解题的关键.6、D【解析】根据题意得:每人要赠送(x1)张相片,有x个人,然后根据题意可列出方程【详解】根据题意得:每人要赠送(x1)张相片,有x个人,全班共送:(x1)x=1980,故选D【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x1)张相片,有x个人是解决问题的关键.7、B【解析】试题解析:连接AC,如图,AB为直径,ACB=90, 故选B点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.8、B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解解:设这

13、种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)80%解这个方程得:x=125则这种服装每件的成本是125元故选B考点:一元一次方程的应用9、B【解析】因为三角形ABC和三角形ABC均为直角三角形,且BC、BC都是我们所要求角的对边,所以根据正弦来解题,求出CAB,进而得出CAB的度数,然后可以求出鱼线BC长度【详解】解:sinCABCAB45CAC15,CAB60sin60,解得:BC3故选:B【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题10、B【解析】根据旋转的性质可得ACAC,然后判断出ACA是等腰直角三角形,根据等腰直角三角形的性

14、质可得CAA45,再根据三角形的一个外角等于与它不相邻的两个内角的和求出ABC,最后根据旋转的性质可得BABC【详解】解:RtABC绕直角顶点C顺时针旋转90得到ABC,ACAC,ACA是等腰直角三角形,CAA45,ABC1CAA204565,BABC65故选B【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、4:7或2:5【解析】根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.【详解】解:当E在线段CD上如图:矩形ABCDABCDABFC

15、FE 设,即EF=2k,BF=3kBE=BF+EF=5kEF:BE=2k5k=25当当E在线段CD的延长线上如图:矩形ABCDABCDABFCFE 设,即EF=4k,BF=3kBE=BF+EF=7kEF:BE=4k7k=47故答案为:4:7或2:5.【点睛】本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.12、6【解析】根据已知线段a4,b9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案【详解】解:a4,b9,设线段x是a,b的比例中项, ,x2ab4936,x6,x6(舍去)故答案为6【点睛】本题主要考查比例线

16、段问题,解题关键是利用两内项之积等于两外项之积解答13、1或9【解析】(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示ODOA,OADODA,AD平分BAE,OADODADAC,OD/AE,DE是圆的切线,DEOD,ODE=E=90o,四边形ODEF是矩形,OFDE,EFOD5,又OFAC,AF,AEAF+EF5+49.(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示同(1)可得:EFOD5,OFDE3,在直角三角形AOF中,AF,AEEFAF541.14、yx2+2x(答案不唯一)【解析】设此二次函数的解析式为yax(x+2),令a1即可【详解】抛物线过

17、点(0,0),(2,0),可设此二次函数的解析式为yax(x+2),把a1代入,得yx2+2x故答案为yx2+2x(答案不唯一)【点睛】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一15、【解析】作辅助线,构建直角DMN,先根据菱形的性质得:DAC=60,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长【详解】解:过M作MNAD于N,四边形ABCD是菱形, EFAC,AE=AF=2,AFM=30,AM=1,RtAMN中,AMN=30, AD=AB=2AE=4, 由勾股定理得: 故答案为【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾

18、股定理及直角三角形30度角的性质,熟练掌握直角三角形中30所对的直角边是斜边的一半16、【解析】点A(2,0),点B (0,1),OA=2,OB=1, .lAB,PACOAB=90.OBA+OAB=90,OBA=PAC.AOB=ACP,ABOPAC, .设AC=m,PC=2m, .当点P在x轴的上方时,由 得, , , ,PC=1, , 由 得, , m2,AC=2,PC=4,OC2+2=4,P(4,4).当点P在x轴的下方时,由 得, , , ,PC=1, , 由 得, , m2,AC=2,PC=4,OC2-2=0,P(0,4).所以P点坐标为或(4,4)或或(0,4)【点睛】本题考察了相似

19、三角形的判定,相似三角形的性质,平面直角坐标系点的坐标及分类讨论的思想.在利用相似三角形的性质列比例式时,要找好对应边,如果对应边不确定,要分类讨论.因点P在x轴上方和下方得到的结果也不一样,所以要分两种情况求解.请在此填写本题解析!17、30或1【解析】根据题意作图,由AB是圆O的直径,可得ADB=ADB=1,继而可求得DAB的度数,则可求得答案【详解】解:如图,AB是圆O的直径,ADB=ADB=1,AD=AD=1,AB=2,cosDAB=cosDAB=,DAB=DAB=60,CAB=30,CAD=30,CAD=1CAD的度数为:30或1故答案为30或1【点睛】本题考查圆周角定理;含30度角

20、的直角三角形三、解答题(共7小题,满分69分)18、 【解析】由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1)和(1+)相乘得出结果【详解】= =故答案为:【点睛】本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题19、(1)2000件;(2)90260元【解析】(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)用(1)的结论2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论【

21、详解】解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据题意得:-=4,解得:x=2000,经检验,x=2000是所列分式方程的解,且符合题意答:商场第一批购进衬衫2000件(2)20002=4000(件),(2000+4000-150)58+150580.8-80000-176000=90260(元)答:售完这两批衬衫,商场共盈利90260元【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算20、(1)证明见解析;(2)4【解析】(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得ABCD,AB=C

22、D,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)连接 EC,易证BEC 是直角三角形,解直角三角形即可解决问题.【详解】(1)证明:四边形 ABCD 是平行四边形,ABCD,AB=CD,AE=AB,AE=CD,AECD,四边形 ACDE 是平行四边形(2)如图,连接 ECAC=AB=AE,EBC 是直角三角形,cosB=,BE=6,BC=2,EC=4【点睛】本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型21、(1);(2) 见解析;

23、(3) 【解析】(1)过点C作CEOA交BD于点E,即可得BCEBOD,根据相似三角形的性质可得,再证明ECPDAP,由此即可求得的值;(2)过点D作DFBO交AC于点F,即可得,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得A=APD=BPC,所以tanBPC=tanA=【详解】(1)如图1,过点C作CEOA交BD于点E,BCEBOD,=,又BC=BO,CE=DOCEOA,ECP=DAP,又EPC=DPA,PA=PC,ECPDAP,AD=CE=DO,即

24、 =;(2)如图2,过点D作DFBO交AC于点F,则 =, =点C为OB的中点,BC=OC,=;(3)如图2,=,由(2)可知=设AD=t,则BO=AO=4t,OD=3t,AOBO,即AOB=90,BD=5t,PD=t,PB=4t,PD=AD,A=APD=BPC,则tanBPC=tanA=【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点22、(1)BC=BD+CE,(2);(3). 【解析】(1)证明ADBEAC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;(2)过D作DEAB,交BA的延长线于

25、E,证明ABCDEA,得到DE=AB=2,AE=BC=4,RtBDE中,BE=6,根据勾股定理即可得到BD的长;(3)过D作DEBC于E,作DFAB于F,证明CEDAFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出的值,根据勾股定理即可求出BD的长.【详解】解:(1)观察猜想结论: BC=BD+CE,理由是:如图,B=90,DAE=90,D+DAB=DAB+EAC=90,D=EAC,B=C=90,AD=AE,ADBEAC,BD=AC,EC=AB,BC=AB+AC=BD+CE;(2)问题解决如图,过D作DEAB,交BA的延长线于

26、E,由(1)同理得:ABCDEA,DE=AB=2,AE=BC=4,RtBDE中,BE=6,由勾股定理得: (3)拓展延伸如图,过D作DEBC于E,作DFAB于F,同理得:CEDAFD,CE=AF,ED=DF,设AF=x,DF=y,则,解得: BF=2+1=3,DF=3,由勾股定理得: 【点睛】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.23、(1)12;(2)CH的长度是10cm【解析】(1)、过点A作于点N,过点M作于点Q,根据RtAMQ中的三角函数得出得出AN的长度;(2)、根据ANB和AGC相似得出DN的长度,然后求出BN的长度

27、,最后求出GC的长度,从而得出答案【详解】解:(1)、过点A作于点N,过点M作于点Q. 在中,. ,.(2)、根据题意:. . ,. . . .答:的长度是10cm .点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题24、(1)81cm;(2)8.6cm;【解析】(1)作EMBC于点M,由EM=ECsinBCE可得答案;(2)作EHBC于点H,先根据EC=求得EC的长度,再根据EE=CECE可得答案【详解】(1)如图1,过点E作EMBC于点M由题意知BCE=71、EC=54,EM=ECsinBCE=54sin7151.3,则单车车座E到地面的高度为51.3+3081cm;(2)如图2所示,过点E作EHBC于点H由题意知EH=700.85=59.5,则EC=62.6,EE=CECE=62.654=8.6(cm)【点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁