《湖南省张家界市永定区重点中学2023届中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省张家界市永定区重点中学2023届中考数学押题卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )A1.018104B1
2、.018105C10.18105D0.10181062已知二次函数y=(x+a)(xa1),点P(x0,m),点Q(1,n)都在该函数图象上,若mn,则x0的取值范围是()A0x01B0x01且x0Cx00或x01D0x013如图所示,将含有30角的三角板的直角顶点放在相互平行的两条直线其中一条上,若1=35,则2的度数为()A10B20C25D304如图,一次函数y1xb与一次函数y2kx4的图象交于点P(1,3),则关于x的不等式xbkx4的解集是()Ax2Bx0Cx1Dx15当ab0时,yax2与yax+b的图象大致是()ABCD6如图,在ABC中,以点B为圆心,以BA长为半径画弧交边B
3、C于点D,连接AD若B=40,C=36,则DAC的度数是()A70B44C34D247在下列各平面图形中,是圆锥的表面展开图的是( )ABCD8如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A1处B2处C3处D4处9如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器
4、人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD10下列实数中,有理数是()ABCD11二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )ABCD12如图,在中,点D为AC边上一点,则CD的长为( )A1BC2D二、填空题:(本大题共6个小题,每小题4分,共24分)13计算3结果等于_14在RtABC中,ACB=90,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_15某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为_元.16图是一个三角形,分别连接这个三角形的
5、中点得到图;再分别连接图中间小三角形三边的中点,得到图按上面的方法继续下去,第n个图形中有_个三角形(用含字母n的代数式表示)17如图,在中,AB为直径,点C在上,的平分线交于D,则_18如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有_白色纸片,第n个图案中有_张白色纸片三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需
6、8小时,比原铁路设计运行时间少用16小时(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m%小时,求m的值20(6分)进入防汛期后,某地对河堤进行了加固该地驻军在河堤加固的工程中出色完成了任务这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数21(6分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题: , ;扇形统
7、计图中机器人项目所对应扇形的圆心角度数为 ;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.22(8分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.(1)求与之间的函数关系式,并注明的取值范围;(2)为何值时,取最大值?最大值是多少?23(8分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地
8、面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG6米,GC53米请你根据以上数据,计算舍利塔的高度AB24(10分)解不等式组:,并把解集在数轴上表示出来.25(10分)已知:如图,在直角梯形ABCD中,ADBC,ABC=90,DEAC于点F,交BC于点G,交AB的延长线于点E,且AE=AC求证:BG=FG;若AD=DC=2,求AB的长26(12分)济南国际滑雪自建成以来,
9、吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示滑行时间x/s0123滑行距离y/m041224(1)根据表中数据求出二次函数的表达式现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式27(12分)在平面直角坐标系xOy中,抛物线y=mx22mx3(m0)与x轴交于A(3,0),B两点(1)求抛物线的表达式及点B的坐标;(2)当2x3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将
10、图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M若经过点C(4.2)的直线y=kx+b(k0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】.故选B.点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).2、D【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答详解:二次函数y=(x+a)(xa1),当y=0时,x1=a,x2=a+
11、1,对称轴为:x= 当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由mn,得:0x0; 当P在对称轴的右侧时,y随x的增大而增大,由mn,得:x01 综上所述:mn,所求x0的取值范围0x01 故选D点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏3、C【解析】分析:如图,延长AB交CF于E,ACB=90,A=30,ABC=601=35,AEC=ABC1=25GHEF,2=AEC=25故选C4、C【解析】试题分析:当x1时,x+bkx+4,即不等式x+bkx+4的解集为x1故选C考点:一次函数与一元一次不等式5、D【解析】ab0,a、b
12、同号当a0,b0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a0,b0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求故选B6、C【解析】易得ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出DAC【详解】AB=BD,B=40,ADB=70,C=36,DAC=ADBC=34故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.7、C【解析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形故选C【点睛】考查了几何体的展开图,熟记常
13、见立体图形的展开图的特征,是解决此类问题的关键注意圆锥的平面展开图是一个扇形和一个圆组成8、D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处如图所示,故选D【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解9、C【解析】根据图象起始位置猜想点B或F为起点,则可以判断正
14、确,错误结合图象判断3t4图象的对称性可以判断正确结合图象易得正确【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故正确;所有点中,只有点D到A距离为2个单位,故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势10、B【解析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,等,很容易
15、选择【详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、为无理数,故本选项错误;D、不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有、根式下开不尽的从而得到了答案11、D【解析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.12、C【解析】根据DBC=A,C=C,判定BCDACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】DB
16、C=A,C=C,BCDACB, CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据二次根式的乘法法则进行计算即可.【详解】 故答案为:1【点睛】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.14、1【解析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在CEM中根据三边关系即可求解【详解】作AB的中点E,连接EM、CE,在直角ABC中,AB=10,E是直角ABC斜边AB上的中点,CE=AB
17、=5,M是BD的中点,E是AB的中点,ME=AD=2,在CEM中,5-2CM5+2,即3CM1,最大值为1,故答案为1【点睛】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答15、28【解析】设标价为x元,那么0.9x-21=2120%,x=28.16、4n1【解析】分别数出图、图、图中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去如图中三角形的个数为按照这个规律即可求出第n各图形中有多少三角形【详解】分别数出图、图、图中的三角形的个数,图中三角形的个数为;图中三角形的个数为;图中三角形的个数为;可以发现,第
18、几个图形中三角形的个数就是4与几的乘积减去1按照这个规律,如果设图形的个数为n,那么其中三角形的个数为故答案为【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题17、1【解析】由AB为直径,得到,由因为CD平分,所以,这样就可求出【详解】解:为直径,又平分,故答案为1【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度18、13 3n+1 【解析】分析:观察图形发现:白色纸片在
19、4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可详解:第1个图案中有白色纸片31+1=4张第2个图案中有白色纸片32+1=7张,第3图案中有白色纸片33+1=10张,第4个图案中有白色纸片34+1=13张第n个图案中有白色纸片3n+1张,故答案为:13、3n+1.点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)1600千米;(2)1【解析】试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全
20、程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+m%)=1600,进而解方程求出即可试题解析:(1)设原时速为xkm/h,通车后里程为ykm,则有: ,解得: 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1m%)(8+m%)=1600,解得:m1=1,m2=0(不合题意舍去),答:m的值为120、300米【解析】解:设原来每天加固x米,根据题意,得 去分母,得 1200+4200=18x(或18x=5400)解得检验:当时,(或分母不等
21、于0)是原方程的解 答:该地驻军原来每天加固300米21、(1),; (2);(3).【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.22、(1);(1)时,取最大值,为.【解析】(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据
22、,即 可得z=,利用矩形的面积公式即可得出解析式;(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得【详解】解:(1)分别延长DE,FP,与BC的延长线相交于G,H,AF=x,CH=x-4,设AQ=z,PH=BQ=6-z,PHEG,即,化简得z=,y=x=-x1+x (4x10);(1)y=-x1+x=-(x-)1+,当x=dm时,y取最大值,最大值是dm1【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质23、55米【解析】由题意可知EDCEBA,FHCFBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得
23、AC=106米,再由即可求得AB=55米.【详解】EDCEBA,FHCFBA,,即,AC=106米,又 ,AB=55米.答:舍利塔的高度AB为55米【点睛】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题24、x【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:,由得,x2;由得,x,故此不等式组的解集为:x在数轴上表示为:点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键2
24、5、(1)证明见解析;(2)AB=【解析】(1)证明:,DEAC于点F,ABC=AFEAC=AE,EAF=CAB,ABCAFEAB=AF连接AG,AG=AG,AB=AFRtABGRtAFGBG=FG(2)解:AD=DC,DFACE=30FAD=E=30AB=AF=26、(1)20s;(2)【解析】(1)利用待定系数法求出函数解析式,再求出y840时x的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可【详解】解:(1)该抛物线过点(0,0),设抛物线解析式为yax2+bx,将(1,4)、(2,12)代入,得:,解得:,所以抛物线的解析式为y2x2+2x, 当y840时,2x2+2x8
25、40,解得:x20(负值舍去),即他需要20s才能到达终点; (2)y2x2+2x2(x+)2, 向左平移2个单位,再向下平移5个单位后函数解析式为y2(x+2+)252(x+)2【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律27、(1)抛物线的表达式为y=x22x2,B点的坐标(1,0);(2)y的取值范围是3y1(2)b的取值范围是b【解析】(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、
26、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.【详解】(1)将A(2,0)代入,得m=1, 抛物线的表达式为y=-2x-2 令-2x-2=0,解得:x=2或x=-1, B点的坐标(-1,0) (2)y=-2x-2=-3当-2x1时,y随x增大而减小,当1x2时,y随x增大而增大,当x=1,y最小=-3 又当x=-2,y=1, y的取值范围是-3y1(2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=x-2由函数图象可知;b的取值范围是:-2b【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.