《江西省高安市2022-2023学年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省高安市2022-2023学年中考数学对点突破模拟试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A八(2)班的总分高于八(1)班B八(2)班的成绩比八(1)班稳定C两个班的最高分在八(2)班D八(2)班的成绩集中在中上游2下列计算结果正确的是()ABCD3下列叙述,错误的是( )A对角线互相垂直且相等的平行四边形是正方形B对角线互相垂直平分的四边形是菱形C对角线互相平分的四边形是平行四边形D对角线相等的四边形是矩形4如图,点
3、E是矩形ABCD的边AD的中点,且BEAC于点F,则下列结论中错误的是()AAF=CFBDCF=DFCC图中与AEF相似的三角形共有5个DtanCAD=5如图,ABC中,BC4,P与ABC的边或边的延长线相切若P半径为2,ABC的面积为5,则ABC的周长为( )A8B10C13D146在平面直角坐标系中,点(-1,-2)所在的象限是()A第一象限B第二象限C第三象限D第四象限7如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()ABCD8若方程x23x4=0的两根分别为x1
4、和x2,则+的值是()A1B2CD9-2的倒数是( )A-2BCD210我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11因式分解:3x2-6xy+3y2=_12在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为_ 人13若4xay+x2yb3x2y,则a+b_14抛物线y2x2+3
5、x+k2经过点(1,0),那么k_15如图,ABCD,1=62,FG平分EFD,则2= .16如图,正方形ABCD的边长为,点E在对角线BD上,且BAE=22.5,EFAB, 垂足为点F,则EF的长是_ 17若方程x24x+10的两根是x1,x2,则x1(1+x2)+x2的值为_三、解答题(共7小题,满分69分)18(10分)如图,AB是O的直径,弦DE交AB于点F,O的切线BC与AD的延长线交于点C,连接AE(1)试判断AED与C的数量关系,并说明理由;(2)若AD=3,C=60,点E是半圆AB的中点,则线段AE的长为 19(5分)如图,在四边形ABCD中,ABCD90,CEAD于点E(1)
6、求证:AECE;(2)若tanD3,求AB的长20(8分)如图所示,ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90,EC的延长线交BD于点P(1)把ABC绕点A旋转到图1,BD,CE的关系是 (选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把ABC绕点A旋转,当EAC=90时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为 ,最大值为 21(10分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正
7、午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知求楼间距AB;若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,22(10分)如图,抛物线y=ax2+bx+c与x轴相交于点A(3,0),B(1,0),与y轴相交于(0,),顶点为P(1)求抛物线解析式;(2)在抛物线是否存在点E,使ABP的面积等于ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积23(12分)如图,在平行四边形ABCD
8、中,连接AC,做ABC的外接圆O,延长EC交O于点D,连接BD、AD,BC与AD交于点F分,ABC=ADB。(1)求证:AE是O的切线;(2)若AE=12,CD=10,求O的半径。24(14分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同 .参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案【详解】A选项:八(2)班的
9、平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;C选项:两个班的最高分无法判断出现在哪个班,错误;D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;故选C【点睛】考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键2、C【解析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项【详解】A、原式,故错误;B、原式,故错误;C、利用合并同类项的知识可知该选项正确;D、,所以原式无意义,错误,故选C【
10、点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大3、D【解析】【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关
11、键4、D【解析】由 又ADBC,所以 故A正确,不符合题意;过D作DMBE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由BAEADC,得到CD与AD的大小关系,根据正切函数可求tanCAD的值,故D错误,符合题意【详解】A.ADBC,AEFCBF, ,故A正确,不符合题意;B. 过D作DMBE交AC于N,DEBM,BEDM,四边形BMDE是平行四边形, BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DF=DC,DCF=DFC,故B正确
12、,不符合题意;C. 图中与AEF相似的三角形有ACD,BAF,CBF,CAB,ABE共有5个,故C正确,不符合题意;D. 设AD=a,AB=b,由BAEADC,有 tanCAD 故D错误,符合题意.故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.5、C【解析】根据三角形的面积公式以及切线长定理即可求出答案【详解】连接PE、PF、PG,AP,由题意可知:PECPFAPGA90,SPBCBCPE424,由切线长定理可知:SPFC+SPBGSPBC4,S四边形AFPGSABC+SPFC+SPBG+SPBC5+4+413,由切线长定理可知:SAP
13、GS四边形AFPG,AGPG,AG,由切线长定理可知:CECF,BEBG,ABC的周长为AC+AB+CE+BEAC+AB+CF+BGAF+AG2AG13,故选C【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型6、C【解析】:点的横纵坐标均为负数,点(-1,-2)所在的象限是第三象限,故选C7、D【解析】由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可【详解】因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形在其余的7个小正方形
14、中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是故选D【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键8、C【解析】试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1x2=4代入,即可求出=故选C考点:根与系数的关系9、B【解析】根据倒数的定义求解.【详解】-2的倒数是-故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握10
15、、A【解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案【详解】该几何体的俯视图是:故选A【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键二、填空题(共7小题,每小题3分,满分21分)11、3(xy)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x16xy+3y1=3(x11xy+y1)=3(xy)1考点:提公因式法与公式法的综合运用12、35【解析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案详解:根据题意可知,本年级捐款捐款的同学一共有2025%=80(人),则本次捐款2
16、0元的有:80(20+10+15)=35(人),故答案为:35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.13、1【解析】两个单项式合并成一个单项式,说明这两个单项式为同类项【详解】解:由同类项的定义可知,a=2,b=1,a+b=1故答案为:1.【点睛】本题考查的知识点为:同类项中相同字母的指数是相同的14、3.【解析】试题解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案为3.15、31【解析】试题分析:由ABCD,根据平行线的性质得1=EFD=62,然后根据角平分线的定义即可得到2的度数ABCD,1=EFD=62,FG平分EFD,2=EFD=62=31
17、故答案是31考点:平行线的性质16、2【解析】设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可【详解】设EF=x,四边形ABCD是正方形,AB=AD,BAD=90,ABD=ADB=45,BD=AB=4+4,EF=BF=x,BE=x,BAE=22.5,DAE=90-22.5=67.5,AED=180-45-67.5=67.5,AED=DAE,AD=ED,BD=BE+ED=x+4+2=4+4,解得:x=2,即EF=2.17、5【解析】由题意得, ,.原式 三、解答题(共7小题,满分69分)18、(1)AED=C,理由见解析;(2) 【解析】(1)根据切线的性质和圆周角定理解
18、答即可;(2)根据勾股定理和三角函数进行解答即可【详解】(1)AED=C,证明如下:连接BD,可得ADB=90,C+DBC=90,CB是O的切线,CBA=90,ABD+DBC=90,ABD=C,AEB=ABD,AED=C,(2)连接BE,AEB=90,C=60,CAB=30,在RtDAB中,AD=3,ADB=90,cosDAB=,解得:AB=2,E是半圆AB的中点,AE=BE,AEB=90,BAE=45,在RtAEB中,AB=2,ADB=90,cosEAB=,解得:AE=故答案为【点睛】此题考查了切线的性质、直角三角形的性质以及圆周角定理此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线
19、的作法19、(1)见解析;(2)AB4【解析】(1)过点B作BFCE于F,根据同角的余角相等求出BCF=D,再利用“角角边”证明BCF和CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长【详解】(1)证明:过点B作BHCE于H,如图1CEAD,BHCCED90,1D90BCD90,1290,2D又BCCDBHCCED(AAS)BHCEBHCE,CEAD,A90,四边形ABHE是矩形,AEBH
20、AECE(2)四边形ABHE是矩形,ABHE在RtCED中,设DEx,CE3x,x2DE2,CE3CHDE2ABHE324【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键20、(1)BD,CE的关系是相等;(2)或;(3)1,1【解析】分析:(1)依据ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90,即可BA=CA,BAD=CAE,DA=EA,进而得到ABDACE,可得出BD=CE;(2)分两种情况:依据PDA=AEC,PCD=ACE,可得PCDACE,即可得到=,进而得到PD=;依据ABD=P
21、BE,BAD=BPE=90,可得BADBPE,即可得到,进而得出PB=,PD=BD+PB=;(3)以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大在RtPED中,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值详解:(1)BD,CE的关系是相等理由:ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90,BA=CA,BAD=CAE,DA=EA,ABDACE,BD=CE;故答案为相等(2)作出旋转后的图形,若点C在AD上,如图2所示:EAC=9
22、0,CE=,PDA=AEC,PCD=ACE,PCDACE,PD=;若点B在AE上,如图2所示:BAD=90,RtABD中,BD=,BE=AEAB=2,ABD=PBE,BAD=BPE=90,BADBPE,即,解得PB=,PD=BD+PB=+=,故答案为或;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大如图3所示,分两种情况讨论:在RtPED中,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小当小三角形旋转到图中ACB的位置时,在RtACE中,CE=4,在RtDAE中,DE=,四边形ACPB是正方形
23、,PC=AB=3,PE=3+4=1,在RtPDE中,PD=,即旋转过程中线段PD的最小值为1;当小三角形旋转到图中ABC时,可得DP为最大值,此时,DP=4+3=1,即旋转过程中线段PD的最大值为1故答案为1,1点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题21、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响【解析】如图,作于M,于则,设想办法构建
24、方程即可解决问题求出AC,AD,分两种情形解决问题即可【详解】解:如图,作于M,于则,设在中,在中,的长为50m由可知:,冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型22、(1)y=x2+x(2)存在,(12,2)或(1+2,2)(3)点F的坐标为(1,2)、(3,2)、(5,2),且平行四边形的面积为 1【解析】(1)设抛物线解析式为y=ax2+bx+c,把(3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐
25、标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;【详解】(1)设抛物线解析式为y=ax2+bx+c,将(3,0),(1,0),(0,)代入抛物线解析式得,解得:a=,b=1,c=抛物线解析式:y=x2+x(2)存在y=x2+x=(x+1)22P点坐标为(1,2)ABP的面积等于ABE的面积,点E到AB的距离等于2,设E(a,2),a2+a=2解得a1=12,a2=1+2符合条件的点E的坐标为(12,2)或(1+2,2)(3)点A(3,0),点B(1,0),A
26、B=4若AB为边,且以A、B、P、F为顶点的四边形为平行四边形ABPF,AB=PF=4点P坐标(1,2)点F坐标为(3,2),(5,2)平行四边形的面积=42=1若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形AB与PF互相平分设点F(x,y)且点A(3,0),点B(1,0),点P(1,2) ,x=1,y=2点F(1,2)平行四边形的面积=44=1综上所述:点F的坐标为(1,2)、(3,2)、(5,2),且平行四边形的面积为1【点睛】本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.23、(1)证明见解析;(2)【解析】(1)
27、作辅助线,先根据垂径定理得:OABC,再证明OAAE,则AE是O的切线;(2)连接OC,证明ACEDAE,得,计算CE的长,设O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论【详解】(1)证明:连接OA,交BC于G,ABC=ADBABC=ADE,ADB=ADE,OABC,四边形ABCE是平行四边形,AEBC,OAAE,AE是O的切线;(2)连接OC,AB=AC=CE,CAE=E,四边形ABCE是平行四边形,BCAE,ABC=E,ADC=ABC=E,ACEDAE,AE=12,CD=10,AE2=DECE,144=(10+CE)CE,解得:CE=8或-18(舍),AC=CE=8,RtAGC中,AG=2,设O的半径为r,由勾股定理得:r2=62+(r-2)2,r=,则O的半径是【点睛】此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键24、甲、乙获胜的机会不相同.【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.甲、乙获胜的机会不相同.考点:可能性大小的判断点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.