河北省保定市涞水县市级名校2022-2023学年中考数学押题卷含解析.doc

上传人:lil****205 文档编号:88310096 上传时间:2023-04-25 格式:DOC 页数:17 大小:665KB
返回 下载 相关 举报
河北省保定市涞水县市级名校2022-2023学年中考数学押题卷含解析.doc_第1页
第1页 / 共17页
河北省保定市涞水县市级名校2022-2023学年中考数学押题卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《河北省保定市涞水县市级名校2022-2023学年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省保定市涞水县市级名校2022-2023学年中考数学押题卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A2B0C1D42下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )ABCD3如图,在矩形ABCD中,AB4,AD5,AD,AB,BC分别与O相切于

2、E,F,G三点,过点D作O的切线交BC于点M,切点为N,则DM的长为( )ABCD4据统计, 2015年广州地铁日均客运量均为人次,将用科学记数法表示为( )ABCD5如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃那么最省事的办法是带( )A带去B带去C带去D带去6已知二次函数的图象如图所示,则下列结论:ac0;a-b+c0;当时,;,其中错误的结论有ABCD7人的头发直径约为0.00007m,这个数据用科学记数法表示()A0.7104 B7105 C0.7104 D71058某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的

3、折线图,则符合这一结果的实验最有可能的是()A在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B掷一枚质地均匀的正六面体骰子,向上一面的点数是4C一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上9如图,矩形ABCD中,AB=3,AD=4,连接BD,DBC的角平分线BE交DC于点E,现把BCE绕点B逆时针旋转,记旋转后的BCE为BCE当线段BE和线段BC都与线段AD相交时,设交点分别为F,G若BFD为等腰三角形,则线段DG长为()ABCD10下列各运算中,计算正确的是()Aa12a3=a4B(3a2)3=9a6C(ab)2=a

4、2ab+b2D2a3a=6a2二、填空题(本大题共6个小题,每小题3分,共18分)11让我们轻松一下,做一个数字游戏: 第一步:取一个自然数,计算得; 第二步:算出的各位数字之和得,计算得; 第三步:算出的各位数字之和得,再计算得; 依此类推,则_12分解因式:_13数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计)若要求折出的盒子体积最大,则正方体的棱长等于_14如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_15地球上的海洋面积约为361000000km1,则科学记数法可表示为_km11

5、625位同学10秒钟跳绳的成绩汇总如下表:人数1234510次数15825101720那么跳绳次数的中位数是_.三、解答题(共8题,共72分)17(8分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30n600乙队mn141160(1)甲队单独完成这项工程所需天数n=,乙队每天修路的长度m=(米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数)当x=90时,求出乙队修路的天数;求y与x之间的函数关系式(不用写出x的取值范围);若总费

6、用不超过22800元,求甲队至少先修了多少米18(8分)已知抛物线yax2+(3b+1)x+b3(a0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”(1)当a2,b1时,求该抛物线的“和谐点”;(2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B求实数a的取值范围;若点A,B关于直线yx(+1)对称,求实数b的最小值19(8分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68试根据以上数据求出潜艇C离开海平面的下潜深度(结果保留整数参考数据:sin6

7、80.9,cos680.4,tan682.5, 1.7)20(8分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比赛参赛选手共有 人,扇形统计图中“69.579.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.21(8分)计算:_22(10分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金

8、额打9折后,若超过2000元再优惠300元;超市:购物金额打8折某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少(直接写出方案)23(12分)如图,在四边形ABCD中,ABC=90,CAB=30,DEAC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长24如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,C=90

9、,EG=4cm,EGF=90,O是EFG斜边上的中点如图,若整个EFG从图的位置出发,以1cm/s的速度沿射线AB方向平移,在EFG平移的同时,点P从EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由(参考数据:1142=

10、12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】【分析】首先确定原点位置,进而可得C点对应的数【详解】点A、B表示的数互为相反数,AB=6原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又BC=2,点C在点B的左边,点C对应的数是1,故选C【点睛】本题主要考查了数轴,关键是正确确定原点位置2、B【解析】由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2

11、列,从左到右的列数分别是2,1故选B【点睛】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.3、A【解析】试题解析:连接OE,OF,ON,OG,在矩形ABCD中,A=B=90,CD=AB=4,AD,AB,BC分别与O相切于E,F,G三点,AEO=AFO=OFB=BGO=90,四边形AFOE,FBGO是正方形,AF=BF=AE=BG=2,DE=3,DM是O的切线,DN=DE=3,MN=MG,CM=5-2-MN=3-MN,在RtDMC中,DM2=CD2+CM2,(3+NM)2=(3-NM)2+42,NM=,DM=3+=,故选B考点:1

12、.切线的性质;3.矩形的性质4、D【解析】科学记数法就是将一个数字表示成(a10的n次幂的形式),其中1|a|10,n表示整数n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂【详解】解:6590000=6.591故选:D【点睛】本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法5、A【解析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.【详解】中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形

13、.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.6、C【解析】根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;根据自变量为-1时函数值,可得答案;根据观察函数图象的纵坐标,可得答案;根据对称轴,整理可得答案【详解】图象开口向下,得a0,图象与y轴的交点在x轴的上方,得c0,ac,故错误;由图象,得x=-1时,y0,即a-b+c0,故正确;由图象,得图象与y轴的交点在x轴的上方,即当x0时,y有大于零的部分,故错误;由对称轴,得x=-=1,解得b=-2a,2a+b=0故正确;故选D【点睛】考查了二次函数图象与系

14、数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点7、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的

15、0的个数所决定【详解】解:0.00007m,这个数据用科学记数法表示7101故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定8、B【解析】根据统计图可知,试验结果在0.17附近波动,即其概率P0.17,计算四个选项的概率,约为0.17者即为正确答案【详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是 ,故C选项错误,抛掷一枚均匀的

16、硬币,前2次都正面朝上,第3次正面仍朝上的概率是 ,故D选项错误,故选B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率频率=所求情况数与总情况数之比熟练掌握概率公式是解题关键9、A【解析】先在RtABD中利用勾股定理求出BD=5,在RtABF中利用勾股定理求出BF=,则AF=4-=再过G作GHBF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GHFB,得出=,即可求解【详解】解:在RtABD中,A=90,AB=3,AD=4,BD=5,在RtABF中,A=90,AB=3,AF=4-DF=4-BF,BF2=32+(4

17、-BF)2,解得BF=,AF=4-=过G作GHBF,交BD于H,FBD=GHD,BGH=FBG,FB=FD,FBD=FDB,FDB=GHD,GH=GD,FBG=EBC=DBC=ADB=FBD,又FBG=BGH,FBG=GBH,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,GHFB, =,即=,解得x=故选A【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键10、D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合

18、题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a22ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,20193=67

19、3,a2019= a3=1,故答案为:1【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值12、【解析】直接利用完全平方公式分解因式得出答案【详解】解:=,故答案为.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键13、【解析】根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得【详解】解:如图示,根据题意可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即,解得故答案为:【点睛】本

20、题考查了勾股定理的应用,正确理解题意是解题的关键14、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方15、3.612【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将361 00

21、0 000用科学记数法表示为3.612故答案为3.61216、20【解析】分析:根据中位数的定义进行计算即可得到这组数据的中位数.详解:由中位数的定义可知,这次跳绳次数的中位数是将这25位同学的跳绳次数按从小到大排列后的第12个和13个数据的平均数,由表格中的数据分析可知,这组数据按从小到大排列后的第12个和第13个数据都是20,这组跳绳次数的中位数是20.故答案为:20.点睛:本题考查的是怎样确定一组数据的中位数,解题的关键是弄清“中位数”的定义:“把一组数据按从小到大的顺序排列后,若数据组中共有奇数个数据,则最中间一个数据是该组数据的中位数;若数据组中数据的个数为偶数个,则最中间两个数据的

22、平均数是这组数据的中位数”.三、解答题(共8题,共72分)17、(1)35,50;(2)12;y=x+;150米【解析】(1)用总长度每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度乙单独完成所需时间可得乙队每天修路的长度m;(2)根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)两队合作时间=总长度,列式计算可得;由中的相等关系可得y与x之间的函数关系式;根据:甲队先修x米的费用+甲、乙两队每天费用合作时间22800,列不等式求解可得【详解】解:(1)甲队单独完成这项工程所需天数n=105030=35(天),则乙单独完成所需天数为21天,乙队每天修路的长度m=105

23、021=50(米),故答案为35,50;(2)乙队修路的天数为=12(天);由题意,得:x+(30+50)y=1050,y与x之间的函数关系式为:y=x+;由题意,得:600+(600+1160)(x+)22800,解得:x150,答:若总费用不超过22800元,甲队至少先修了150米【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.18、(1)()或(1,1);(1)2a17b的最小值是【解析】(1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;(1)抛物线上恒有两个不同的“和谐点”A、B则关于m的方程m=am1+(3b+1)m+b-3

24、的根的判别式=9b1-4ab+11a令y=9b1-4ab+11a,对于任意实数b,均有y2,所以根据二次函数y=9b1-4ab+11的图象性质解答;利用二次函数图象的对称性质解答即可【详解】(1)当a1,b1时,m1m1+4m+14,解得m或m1所以点P的坐标是(,)或(1,1);(1)mam1+(3b+1)m+b3,9b14ab+11a令y9b14ab+11a,对于任意实数b,均有y2,也就是说抛物线y9b14ab+11的图象都在b轴(横轴)上方(4a)14911a22a17由“和谐点”定义可设A(x1,y1),B(x1,y1),则x1,x1是ax1+(3b+1)x+b32的两不等实根,线段

25、AB的中点坐标是:(,)代入对称轴yx(+1),得(+1),3b+1+aa2,2,a1为定值,3b+1+a11,bb的最小值是【点睛】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点19、潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CDAB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在RtACD中表示出CD和在RtBCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解试题解析:过点C作

26、CDAB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:ACD=30,BCD=68,设AD=x,则BD=BA+AD=1000+x,在RtACD中,CD= = = 在RtBCD中,BD=CDtan68,325+x= tan68解得:x100米,潜艇C离开海平面的下潜深度为100米点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解视频20、(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.569.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5

27、99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.579.5所占的百分比;(2)观察可知79.599.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)10%=50(人),“89.599.5”这一组人数占百分比为:(8+4)50100%=24%,所以“69.579.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为50,30%;(2)不能;由统计图知,79.589.5和89.599.5两组占参赛选手60%,而

28、7879.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P=.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.21、1【解析】首先计算负整数指数幂和开平方,再计算减法即可【详解】解:原式931【点睛】此题主要考查了实数运算,关键是掌握负整数指数幂:为正整数)22、(1)这种篮球的标价为每个50元;(2)见解析【解析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B

29、超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x元,依题意,得,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100500.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50500.9-300)=3900元,单独在B超市购买:100500.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45500.9-300=1725元,两

30、次购买,每次各买45个,需要17252=3450元,其余10个在B超市购买,需要10500.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.23、38+12 【解析】根据ABC=90,AE=CE,EB=12,求出AC,根据RtABC中,CAB=30,BC=12,求出根据DEAC,AE=CE,得AD=DC,在RtADE中,由勾股定理求出 AD,从而得出

31、DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案【详解】ABC=90,AE=CE,EB=12,EB=AE=CE=12,AC=AE+CE=24,在RtABC中,CAB=30,BC=12, DEAC,AE=CE,AD=DC,在RtADE中,由勾股定理得 DC=13,四边形ABCD的周长=AB+BC+CD+DA=【点睛】此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长24、(1)1.5s;(2)S=x2+x+3(0x3);(3)当x=(s)时,四边形OAHP面积与ABC面积的比为13

32、:1【解析】(1)由于O是EF中点,因此当P为FG中点时,OPEGAC,据此可求出x的值(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积三角形AHF中,AH的长可用AF的长和FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长)三角形OFP中,可过O作ODFP于D,PF的长易知,而OD的长,可根据OF的长和FOD的余弦值得出由此可求得y、x的函数关系式(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值【详解】解:(1)RtEFGRtABC,即,FG=3cm当P为FG的中点时

33、,OPEG,EGACOPACx=3=1.5(s)当x为1.5s时,OPAC(2)在RtEFG中,由勾股定理得EF=5cmEGAHEFGAFH,AH=(x+5),FH=(x+5)过点O作ODFP,垂足为D点O为EF中点OD=EG=2cmFP=3xS四边形OAHP=SAFHSOFP=AHFHODFP=(x+5)(x+5)2(3x)=x2+x+3(0x3)(3)假设存在某一时刻x,使得四边形OAHP面积与ABC面积的比为13:1则S四边形OAHP=SABCx2+x+3=686x2+85x250=0解得x1=,x2=(舍去)0x3当x=(s)时,四边形OAHP面积与ABC面积的比为13:1【点睛】本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁