《河北省邢台市宁晋县2022-2023学年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省邢台市宁晋县2022-2023学年中考数学押题卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,在平面直角坐标系中,直线y=k1x+2(k10)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若SOBC=1,tanBOC=,则k2的值是()A3BC3D62如图,将含60角的直角三角板ABC绕顶点A
2、顺时针旋转45度后得到ABC,点B经过的路径为弧BB,若BAC=60,AC=1,则图中阴影部分的面积是( )ABCD3如图,AB是O的直径,点C,D,E在O上,若AED20,则BCD的度数为()A100B110C115D1204如图的几何体中,主视图是中心对称图形的是()ABCD5在3,0,4,这四个数中,最大的数是( )A3B0C4D6下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角相等7大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )A6.5千克 B7.
3、5千克 C8.5千克 D9.5千克8如图,交于点,平分,交于. 若,则的度数为( ) A35oB45oC55oD65o9被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )A25104m2B0.25106m2C2.5105m2D2.5106m210如图,在ABC中,C=90,B=10,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SDA
4、C:SABC=1:1A1B2C1D4二、填空题(本大题共6个小题,每小题3分,共18分)11方程的解是_12如图,将AOB以O为位似中心,扩大得到COD,其中B(3,0),D(4,0),则AOB与COD的相似比为_13如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_.14一个n边形的每个内角都为144,则边数n为_15我们知道方程组的解是,现给出另一个方程组,它的解是_16二次函数的图象如图,若一元二次方程有实数根,则 的最大值为_三、解答题(共8题,共72分)17(8分)已知ABC 中,AD 是BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长
5、线于点 H(1)如图 1,若BAC=60直接写出B 和ACB 的度数;若 AB=2,求 AC 和 AH 的长;(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明18(8分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”当的半径为1时在点、中,的“特征点”是_;点P在直线上,若点P为的“特征点”求b的取值范围;的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围19(8分)已知化简;如果、是方程的两个根,求的值20(8分)在平面直角坐标系中,函数()的图象经过
6、点(4,1),直线与图象交于点,与轴交于点求的值;横、纵坐标都是整数的点叫做整点记图象在点,之间的部分与线段,围成的区域(不含边界)为当时,直接写出区域内的整点个数;若区域内恰有4个整点,结合函数图象,求的取值范围21(8分)如图,已知O是以AB为直径的ABC的外接圆,过点A作O的切线交OC的延长线于点D,交BC的延长线于点E(1)求证:DAC=DCE;(2)若AB=2,sinD=,求AE的长22(10分)计算: .23(12分)计算:12+(3.14)0|1|24在平面直角坐标系xOy中,函数(x0)的图象与直线l1:yxb交于点A(3,a2)(1)求a,b的值;(2)直线l2:yxm与x轴
7、交于点B,与直线l1交于点C,若SABC6,求m的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】如图,作CHy轴于H通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CHy轴于H由题意B(0,2), CH=1,tanBOC= OH=3,C(1,3),把点C(1,3)代入,得到k2=3,故选C【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型2、A【解析】试题解析:如图,在RtABC中,ACB=90,BAC=60,AC=1,BC=ACtan60=1=,AB=2SAB
8、C=ACBC=根据旋转的性质知ABCABC,则SABC=SABC,AB=ABS阴影=S扇形ABB+SABC-SABC=故选A考点:1.扇形面积的计算;2.旋转的性质3、B【解析】连接AD,BD,由圆周角定理可得ABD20,ADB90,从而可求得BAD70,再由圆的内接四边形对角互补得到BCD=110.【详解】如下图,连接AD,BD,同弧所对的圆周角相等,ABD=AED20,AB为直径,ADB90,BAD90-20=70,BCD=180-70=110.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.4、C【解析】解:球是主视图是圆,圆是中心对称图形,故选C5、C
9、【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小因此,在3,0,1,这四个数中,301,最大的数是1故选C6、D【解析】解:A、如果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D7、C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C【点睛】本题考查了列一元一次方程解实际问
10、题,弄清题意,找出等量关系是解答本题的关键.8、D【解析】分析:根据平行线的性质求得BEC的度数,再由角平分线的性质即可求得CFE 的度数.详解: 又EF平分BEC,.故选D.点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.9、C【解析】科学记数法的表示形式为a10n,其中1|a|10,n为整数【详解】解:由科学记数法可知:250000 m2=2.5105m2,故选C【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键10、D【解析】根据作图的过程可知,AD是BAC的平分线.故正确.如图,在ABC中,C=90,B=10,CAB=6
11、0.又AD是BAC的平分线,1=2=CAB=10,1=902=60,即ADC=60.故正确.1=B=10,AD=BD.点D在AB的中垂线上.故正确.如图,在直角ACD中,2=10,CD=AD.BC=CD+BD=AD+AD=AD,SDAC=ACCD=ACAD.SABC=ACBC=ACAD=ACAD.SDAC:SABC故正确.综上所述,正确的结论是:,共有4个故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、x=1【解析】将方程两边平方后求解,注意检验【详解】将方程两边平方得x-3=4,移项得:x=1,代入原方程得=2,原方程成立,故方程2的解是x=1故本题答案为:x=1【点睛】在
12、解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验12、3:1【解析】AOB与COD关于点O成位似图形,AOBCOD,则AOB与COD的相似比为OB:OD=3:1,故答案为3:1 (或)13、2【解析】分析:由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,设高为h,则62h=16,解得:h=1它的表面积是:212+262+162=214、10【解析】解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36,因为多边形的外角和是360,所以这个多边形的边数等于36036=10,故答案为:101
13、5、【解析】观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.16、3【解析】试题解析:抛物线的开口向上,顶点纵坐标为-3,a1-=-3,即b2=12a,一元二次方程ax2+bx+m=1有实数根,=b2-4am1,即12a-4am1,即12-4m1,解得m3,m的最大值为3,三、解答题(共8题,共72分)17、(1)45,;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC证明见解析.【解析】(1)先根据角平分线的定义可得BAD=CAD=30,由等腰三角形的
14、性质得B=75,最后利用三角形内角和可得ACB=45;如图 1,作高线 DE,在 RtADE 中,由DAC=30,AB=AD=2 可得 DE=1,AE=, 在 RtCDE 中,由ACD=45,DE=1,可得 EC=1,AC= +1,同理可得 AH 的长;(2)如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH,易证ACHAFH,则 AC=AF,HC=HF, 根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论【详解】(1)AD 平分BAC,BAC=60,BAD=CAD=30,AB=AD,B=75,ACB=1806075=45;如图 1,过 D 作 D
15、EAC 交 AC 于点 E, 在 RtADE 中,DAC=30,AB=AD=2,DE=1,AE=,在 RtCDE 中,ACD=45,DE=1,EC=1,AC=+1,在 RtACH 中,DAC=30,CH=AC=AH=;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC证明:如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH 易证ACHAFH,AC=AF,HC=HF,GHBC,AB=AD,ABD=ADB,AGH=AHG,AG=AH,AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH【点睛】本题是三角形的综合题,难度适中,考查了三角形
16、全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键18、(1)、;(2)或,【解析】据若,则点P为的“特征点”,可得答案;根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案【详解】解:,点是的“特征点”;,点是的“特征点”;,点不是的“特征点”;故答案为、如图1,在上,若存在的“特征点”点P,点O到直线的距离直线交y轴于点E,过O作直线于点H因为在中,可知可得同理可得的取值范围是:如图2
17、,设C点坐标为,直线,线段MN上的所有点都不是的“特征点”,即,解得或,点C的横坐标的取值范围是或,故答案为 :(1)、;(2)或,【点睛】本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了19、 (1) ;(2)-4.【解析】(1)先通分,再进行同分母的减法运算,然后约分得到原式 (2)利用根与系数的关系得到 然后利用整体代入的方法计算【详解】解:(1)(2)、是方程,【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时, 也考查了分式的加减法20、(1)4;(2)
18、3个(1,0),(2,0),(3,0)或【解析】分析:(1)根据点(4,1)在()的图象上,即可求出的值;(2)当时,根据整点的概念,直接写出区域内的整点个数即可.分当直线过(4,0)时,当直线过(5,0)时,当直线过(1,2)时,当直线过(1,3)时四种情况进行讨论即可.详解:(1)解:点(4,1)在()的图象上,(2) 3个(1,0),(2,0),(3,0) 当直线过(4,0)时:,解得当直线过(5,0)时:,解得当直线过(1,2)时:,解得当直线过(1,3)时:,解得综上所述:或点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念
19、是解题的关键,注意分类讨论思想在解题中的应用.21、(1)证明见解析;(2)【解析】(1)由切线的性质可知DAB=90,由直角所对的圆周为90可知ACB=90,根据同角的余角相等可知DAC=B,然后由等腰三角形的性质可知B=OCB,由对顶角的性质可知DCE=OCB,故此可知DAC=DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由DAC=DCE,D=D可知DECDCA,故此可得到DC2=DEAD,故此可求得DE=,于是可求得AE=【详解】解:(1)AD是圆O的切线,DAB=90AB是圆O的直径,ACB=90DAC+CAB=90,CAB+ABC=90,DAC=BOC=O
20、B,B=OCB又DCE=OCB,DAC=DCE(2)AB=2,AO=1sinD=,OD=3,DC=2在RtDAO中,由勾股定理得AD=DAC=DCE,D=D,DECDCA,即解得:DE=,AE=ADDE=22、【解析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式 .【点睛】此题主要考查了实数运算,正确化简各数是解题关键23、1.【解析】直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案【详解】解:原式=1+41(1)=1+41+1=1【点睛】本题考查了实数的运算,零指数幂,负整数指数幂
21、,解题的关键是掌握幂的运算法则.24、(1)a=3,b=-2;(2) m8或m2【解析】(1)把A点坐标代入反比例解析式确定出a的值,确定出A坐标,代入一次函数解析式求出b的值;(2)分别求出直线l1与x轴交于点D,再求出直线l2与x轴交于点B,从而得出直线l2与直线l1交于点C坐标,分两种情况进行讨论:当SABC=SBCD+SABD=6时,利用三角形的面积求出m的值,当SABC=SBCDSABD=6时,利用三角形的面积求出m的值,从而得出m的取值范围【详解】(1)点A在图象上a3A(3,1)点A在yxb图象上13bb2解析式yx2(2)设直线yx2与x轴的交点为DD(2,0)当点C在点A的上方如图(1)直线yxm与x轴交点为BB(m,0)(m3)直线yxm与直线yx2相交于点C解得:CSABCSBCDSABD6m8若点C在点A下方如图2SABCSBCDSABD6m2综上所述,m8或m2【点睛】此题考查了一次函数与反比例函数的交点问题,三角形的面积,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键