福建省福州市鼓楼区延安中学2022-2023学年中考五模数学试题含解析.doc

上传人:茅**** 文档编号:88309994 上传时间:2023-04-25 格式:DOC 页数:20 大小:867.50KB
返回 下载 相关 举报
福建省福州市鼓楼区延安中学2022-2023学年中考五模数学试题含解析.doc_第1页
第1页 / 共20页
福建省福州市鼓楼区延安中学2022-2023学年中考五模数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《福建省福州市鼓楼区延安中学2022-2023学年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《福建省福州市鼓楼区延安中学2022-2023学年中考五模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )ABCD2春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后

2、打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A经过集中喷洒药物,室内空气中的含药量最高达到B室内空气中的含药量不低于的持续时间达到了C当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内3若代数式有意义,则实数x的取值范围是()Ax=0Bx=3Cx0Dx34将一根圆柱形的空心钢管任意放置,它的主视图不可能是()AB

3、CD5如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )ABCD6在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )A-4或-14B-4或14C4或-14D4或147如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是( )ABCD8下列运算正确的是()Ax2x3x6Bx2+x22x4C(2x)24x2D( a+b)2a2+b29下列计算正确的是Aa2a22a4 B(a2)3a6 C3a26a23

4、a2 D(a2)2a2410关于x的不等式组的所有整数解是()A0,1B1,0,1C0,1,2D2,0,1,211如图,在平面直角坐标系中,ABC与A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A(4,3)B(3,4)C(3,3)D(4,4)12 “车辆随机到达一个路口,遇到红灯”这个事件是( )A不可能事件B不确定事件C确定事件D必然事件二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,DM垂直平分AC,交BC于点D,连接AD,若C=28,AB=BD,则B的度数为_度14有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如

5、图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_.15一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3)若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_16等腰中,是BC边上的高,且,则等腰底角的度数为_.17已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_.18已知是二元一次方程组的解,则m+3n的立方根为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q

6、(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形20(6分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k0)的图象交于A(1,a),B(3,b)两点求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求PAB的面积21(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_人;扇形统计图中,“电

7、视”所对应的圆心角的度数是_;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22(8分)如图,A=B,AE=BE,点D在AC边上,1=2,AE和BD相交于点O求证:AECBED;若1=40,求BDE的度数23(8分)一次函数yx的图象如图所示,它与二次函数yax24axc的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C(1)求点C的坐标;(2)设二次函数图象的顶点为D若点D与点C关于x轴对称,且ACD的面积等于3,求此二次函数的关系式;若CDAC,且ACD的面积等于10,求此二次函数的关系式24(10

8、分)如图,经过点C(0,4)的抛物线()与x轴相交于A(2,0),B两点(1)a 0, 0(填“”或“”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由25(10分)如图,直角ABC内接于O,点D是直角ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作ECP=AED,CP交DE的延长线于点P,连结PO交O于点F(1)求证:PC是O的切线;(2)若PC=3,P

9、F=1,求AB的长26(12分)已知关于x的方程x26mx+9m29=1(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1x2,若x1=2x2,求m的值27(12分)如图,一次函数ykx+b与反比例函数y(x0)的图象交于A(m,6),B(3,n)两点求一次函数关系式;根据图象直接写出kx+b0的x的取值范围;求AOB的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图

10、2、C【解析】利用图中信息一一判断即可.【详解】解: A、正确不符合题意B、由题意x=4时,y=8,室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24-2.5=21.535,故本选项错误,符合题意;D、正确不符合题意,故选C.【点睛】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.3、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x30,解得,x3,故选D点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.4、A【

11、解析】试题解析:一根圆柱形的空心钢管任意放置,不管钢管怎么放置,它的三视图始终是,主视图是它们中一个,主视图不可能是故选A.5、B【解析】根据图示,可得:b0a,|b|a|,据此判断即可【详解】b0a,|b|a|,a+b0,|a+b|= -a-b故选B【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握6、D【解析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得【详解】一条抛物线的函数表达式为y=x2+6x+m,这条抛物线的顶点为(-3,m-9),关于x轴对称的抛物线的顶点(-3,9-m),

12、它们的顶点相距10个单位长度|m-9-(9-m)|=10,2m-18=10,当2m-18=10时,m=1,当2m-18=-10时,m=4,m的值是4或1故选D【点睛】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系7、B【解析】由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,小长方形与原长方形相似,故选B【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键8

13、、C【解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可【详解】A、x2x3x5,故A选项错误;B、x2+x22x2,故B选项错误;C、(2x)24x2,故C选项正确;D、( a+b)2a2+2ab+b2,故D选项错误,故选C【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键9、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2a2a4 ,故A选项错误;B. (a2)3a6 ,正确;C. 3a26a2-3a2 ,故C选项错误;D. (a2)

14、2a24a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.10、B【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案【详解】解不等式2x4,得:x2,解不等式3x51,得:x2,则不等式组的解集为2x2,所以不等式组的整数解为1、0、1,故选:B【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键11、A【解析】延长A1A、B1B和

15、C1C,从而得到P点位置,从而可得到P点坐标【详解】如图,点P的坐标为(-4,-3)故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心12、B【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的

16、事件.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据线段垂直平分线上的点到两端点的距离相等可得ADCD,等边对等角可得DACC,三角形的一个外角等于与它不相邻的两个内角的和求出ADBCDAC,再次根据等边对等角可得可得ADBBAD,然后利用三角形的内角和等于180列式计算即可得解【详解】DM垂直平分AC,ADCD,DACC28,ADBCDAC282856,ABBD,ADBBAD56,在ABD中,B180BADADB18056561故答案为1【点睛】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的

17、性质,三角形的内角和定理,熟记各性质与定理是解题的关键14、小林【解析】观察图形可知,小林的成绩波动比较大,故小林是新手故答案是:小林15、(,)或(,)【解析】分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得【详解】如图,当点A、B、C的对应点在第一象限时,由位似比为1:2知点A(0,)、B(,0)、C(,),该正方形的中心点的P的坐标为(,);当点A、B、C的对应点在第三象限时,由位似比为1:2知点A(0,-)、B(-,0)、C(-,-),此时新正方形的中心点Q的坐标为(-,-),故答案为(,)或(-,-)【点睛】本题主要考查位似变换,解题的关键是熟练

18、掌握位似变换的性质和正方形的性质16、,【解析】分三种情况:点A是顶角顶点时,点A是底角顶点,且AD在ABC外部时,点A是底角顶点,且AD在ABC内部时,再结合直角三角形中,30的角所对的直角边等于斜边的一半即可求解.【详解】如图,若点A是顶角顶点时,AB=AC,ADBC,BD=CD,,AD=BD=CD,在RtABD中,B=BAD=;如图,若点A是底角顶点,且AD在ABC外部时,AC=BC,ACD=30,BAC=ABC=30=15;如图,若点A是底角顶点,且AD在ABC内部时,AC=BC,C=30,BAC=ABC=(180-30)=75;综上所述,ABC底角的度数为45或15或75;故答案为,

19、【点睛】本题考查了等腰三角形的性质和直角三角形中30的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.17、16或1【解析】题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是1;故它的周长是16或1故答案为:16或1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键1

20、8、3【解析】把x与y的值代入方程组求出m与n的值,即可确定出所求【详解】解:把代入方程组得:相加得:m+3n=27,则27的立方根为3,故答案为3【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2) 【解析】试题分析:(1)先根据四边形ABCD是矩形,得出ADBC,PDO=QBO,再根据O为BD的中点得出PODQOB,即可证得OP=OQ;(2)根据已知条件得出A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是

21、菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形试题解析:(1)证明:因为四边形ABCD是矩形,所以ADBC,所以PDO=QBO,又因为O为BD的中点,所以OB=OD,在POD与QOB中,PDO=QBO,OB=OD,POD=QOB,所以PODQOB,所以OP=OQ(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以A=90,在RtABP中,由勾股定理得:,即,解得:t=,即运动时间为秒时,四边形PBQD是菱形考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理20、(1)反比例函数的表达式y=,(2)点P坐标(,0),

22、(3)SPAB= 1.1 【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由SPAB=SABDSPBD即可求出PAB的面积.解:(1)把点A(1,a)代入一次函数y=x+4,得a=1+4,解得a=3,A(1,3),点A(1,3)代入反比例函数y=,得k=3,反比例函数的表达式y=,(2)把B(3,b)代入y=得,b=1点B坐标(3,1);作点B作关于x轴的对称点D,交x

23、轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,D(3,1),设直线AD的解析式为y=mx+n,把A,D两点代入得,解得m=2,n=1,直线AD的解析式为y=2x+1, 令y=0,得x=,点P坐标(,0),(3)SPAB=SABDSPBD=222=2=1.1 点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.21、 (1)1000;(2)54;(3)见解析;(4)32万人【解析】根据“每项人数总人数该项所占百分比”,“所占角度360

24、度该项所占百分比”来列出式子,即可解出答案.【详解】解:(1)40040%1000(人)(2)36054,故答案为:1000人;54;(3)110%9%26%40%15%15%1000150(人)(4)8052.8(万人)答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.22、(1)见解析;(1)70【解析】(1)根据全等三角形的判定即可判断AECBED;(1)由(1)可知:EC=ED,C=BDE,根据等腰三角形的性质即可知C的度数,从而可求出BDE的度数.【详解】证明:(1)AE和BD相交于点O,AOD=BOE在AOD和BOE中,A=B,BEO

25、=1又1=1,1=BEO,AEC=BED 在AEC和BED中, AECBED(ASA)(1)AECBED,EC=ED,C=BDE 在EDC中,EC=ED,1=40,C=EDC=70,BDE=C=70【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.23、(1)点C(1,);(1)yx1x; yx11x【解析】试题分析:(1)求得二次函数yax14axc对称轴为直线x1,把x1代入yx求得y=,即可得点C的坐标;(1)根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m) ,根据SACD3即可求得m的值,即求得点A的坐标,把A.D的坐标

26、代入yax14axc得方程组,解得a、c的值即可得二次函数的表达式.设A(m,m)(m1),过点A作AECD于E,则AE1m,CEm,根据勾股定理用m表示出AC的长,根据ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a0,则点D在点C下方,求点D的坐标;第二种情况,若a0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入yax14axc即可求得函数表达式.试题解析:(1)yax14axca(x1)14ac二次函数图像的对称轴为直线x1当x1时,yx,C(1,)(1)点D与点C关于x轴对称,D(1,),CD3.设A(m,m) (m1),由SACD3,得3(1

27、m)3,解得m0,A(0,0).由A(0,0)、 D(1,)得解得a,c0.yx1x.设A(m,m)(m1),过点A作AECD于E,则AE1m,CEm,AC(1m),CDAC,CD(1m).由SACD10得(1m)110,解得m1或m6(舍去),m1A(1,),CD5.若a0,则点D在点C下方,D(1,),由A(1,)、D(1,)得解得yx1x3.若a0,则点D在点C上方,D(1,),由A(1,)、D(1,)得解得yx11x.考点:二次函数与一次函数的综合题.24、(1),;(2);(3)E(4,4)或(,4)或(,4)【解析】(1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;(2)根

28、据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;(3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CEx轴,交抛物线于点E,过点E作EFAC,交x轴于点F,如图1所示;(ii)假设在抛物线上还存在点E,使得以A,C,F,E为顶点所组成的四边形是平行四边形,过点E作EFAC交x轴于点F,则四边形ACFE即为满足条件的平行四边形,可得AC=EF,ACEF,如图2,过点E作EGx轴于点G,分别求出E坐标即可【详解】(1)a0,0;(2)直线x=2是对称轴,A(2,0),B(6,0

29、),点C(0,4),将A,B,C的坐标分别代入,解得:,抛物线的函数表达式为;(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CEx轴,交抛物线于点E,过点E作EFAC,交x轴于点F,如图1所示,则四边形ACEF即为满足条件的平行四边形,抛物线关于直线x=2对称,由抛物线的对称性可知,E点的横坐标为4,又OC=4,E的纵坐标为4,存在点E(4,4);(ii)假设在抛物线上还存在点E,使得以A,C,F,E为顶点所组成的四边形是平行四边形,过点E作EFAC交x轴于点F,则四边形ACFE即为满足条件的平行四边形,AC=EF,ACEF,如图2,过点E

30、作EGx轴于点G,ACEF,CAO=EFG,又COA=EGF=90,AC=EF,CAOEFG,EG=CO=4,点E的纵坐标是4,解得:,点E的坐标为(,4),同理可得点E的坐标为(,4)25、(1)证明见解析;(2)1【解析】试题分析:(1)连接OC,欲证明PC是O的切线,只要证明PCOC即可;(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题试题解析:(1)如图,连接OC,PDAB,ADE=90,ECP=AED,又EAD=ACO,PCO=ECP+ACO=AED+EAD=90,PCOC,PC是O切线;(2)延长PO交圆于G点,PFPG=,PC=3,PF=1,PG=9,FG=91=1,A

31、B=FG=1考点:切线的判定;切割线定理26、 (1)见解析;(2)m=2【解析】(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)在方程x26mx+9m29=1中,=(6m)24(9m29)=26m226m2+26=261方程有两个不相等的实数根;(2)关于x的方程:x26mx+9m29=1可化为:x(2m+2)x(2m2)=1,解得:x=2m+2和x=2m-2,2m+22m2,x1x2,x1=2m+2,x2=2m2,又x1=2x2,2m+2=2(2m2)解得:m=2【点睛】(1)熟知“一元二次方程根的判别

32、式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x26mx+9m29=1的两个根是解答第2小题的关键.27、(1)y2x1 ;(2)1x2 ;(2)AOB的面积为1 .【解析】试题分析:(1)首先根据A(m,6),B(2,n)两点在反比例函数y=(x0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可(2)由-2x+1-0,求出x的取值范围即可(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出AOB的面积是多少即可试题解析:(1)A(m,6),B(2,n)两点在反比例函数y=(x0)的图象上,6=,解得m=1,n=2,A(1,6),B(2,2),A(1,6),B(2,2)在一次函数y=kx+b的图象上,解得,y=-2x+1(2)由-2x+1-0,解得0x1或x2(2)当x=0时,y=-20+1=1,C点的坐标是(0,1);当y=0时,0=-2x+1,解得x=4,D点的坐标是(4,0);SAOB=41-11-42=16-4-4=1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁