《湖北省武汉江岸区七校联考2023年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖北省武汉江岸区七校联考2023年中考三模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1从 ,0, ,6这5个数中随机抽取一个数,抽到有理数的概率是()ABCD2已知一次函数且随的增大而增大,那么它的图象不经过()A第一象限B第二象限C第三象限D第四象限3下列运算正确的是()Aa12a4=a3Ba4a2=a8C(a2)3
2、=a6Da(a3)2=a74小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A50,50B50,30C80,50D30,505下列各数中是有理数的是()AB0CD6已知关于x的一元二次方程3x2+4x5=0,下列说法正确的是( )A方程有两个相等的实数根B方程有两个不相等的实数根C没有实数根D无法确定7如图,二次函数yax2bxc(a0)的图象经过点A,B,C现有下面四个推断:抛物线开口向下;当x=2时,y取最大值;当m ax2bxc时,x的取值范围是4x0;其中推断正确的是 ( )ABCD8如图
3、,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )A3.5B4C7D149甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示下列说法:a=40;甲车维修所用时间为1小时;两车在途中第二次相遇时t的值为5.25;当t=3时,两车相距40千米,其中不正确的个
4、数为()A0个B1个C2个D3个10把抛物线y2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()Ay2(x+1)2+1By2(x1)2+1Cy2(x1)21Dy2(x+1)21二、填空题(共7小题,每小题3分,满分21分)11已知关于x的方程x22x+n=1没有实数根,那么|2n|1n|的化简结果是_12已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 13如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则APB=_ .14如图,将三角形AOC绕点O顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_(结果保留)15因式分解
5、:x2y-4y3=_.16已知a、b满足a2+b28a4b+20=0,则a2b2=_17不等式组的解集是_三、解答题(共7小题,满分69分)18(10分)综合与探究如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD,BD设点M运动的时间为t(t0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过
6、程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由19(5分)如图所示,点C为线段OB的中点,D为线段OA上一点连结AC、BD交于点P(问题引入)(1)如图1,若点P为AC的中点,求的值温馨提示:过点C作CEAO交BD于点E(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:(问题解决)(3)如图2,若AO=BO,AOBO,求tanBPC的值20(8分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为
7、30,由B处望山脚C处的俯角为45,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据1.732)21(10分) “食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“
8、了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率22(10分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1=1(1)若CE=1,求BC的长;(1)求证:AM=DF+ME23(12分)一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面如图建立平面直角坐标系()为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标根据题意可知,该二次函数图象上三个点
9、的坐标分别是_;()求这个二次函数的解析式和自变量的取值范围24(14分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据有理数的定义可找出在从,0,6这5个数中只有0、6为有理数,再根据概率公式即可求出抽到有理数的概率【详解】在,0,6这5个数中有理数只有0、6这3个数,抽到有理数的概率是,故选C【点睛】本题考查了概率公式
10、以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键2、B【解析】根据一次函数的性质:k0,y随x的增大而增大;k0,y随x的增大而减小,进行解答即可【详解】解:一次函数y=kx-3且y随x的增大而增大,它的图象经过一、三、四象限,不经过第二象限,故选:B【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.3、D【解析】分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得【详解】解:A、a12a4=a8,此选项错误;B、a4a2=a6,此选项错误;C、(-a2)3=-a6,此选项错误;D、a(a3)2=aa6=a7,此选项正确;故选D
11、【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则4、A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解详解:由扇形统计图可知,购买课外书花费为100元的同学有:2010%=2(人),购买课外书花费为80元的同学有:2025%=5(人),购买课外书花费为50元的同学有:2040%=8(人),购买课外书花费为30元的同学有:2020%=4(人),购买课外书花费为20元的同学有:205%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,
12、50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)2=50(元) 故选A点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系5、B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案【详解】A、是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、是无理数,故本选项错误,故选B【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键6、B【解
13、析】试题分析:先求出=4243(5)=760,即可判定方程有两个不相等的实数根故答案选B.考点:一元二次方程根的判别式7、B【解析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案【详解】解:由图象可知,抛物线开口向下,所以正确;若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以错误,从而排除掉A和D;剩下的选项中都有,所以是正确的;易知直线y=kx+c(k0)经过点A,C,当kx+cax2+bx+c时,x的取值范围是x-4或x0,从而错误故选:B【点睛】本题考查
14、二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题8、A【解析】根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可【详解】解:菱形ABCD的周长为28,AB=284=7,OB=OD,E为AD边中点,OE是ABD的中位线,OE=AB=7=3.1故选:A【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键9、A【解析】解:由函数图象,得a=1203=40,故正确,由题
15、意,得5.53120(402),=2.51.5,=1甲车维修的时间为1小时;故正确,如图:甲车维修的时间是1小时,B(4,120)乙在甲出发2小时后匀速前往B地,比甲早30分钟到达E(5,240)乙行驶的速度为:2403=80,乙返回的时间为:24080=3,F(8,0)设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,解得,y1=80t200,y2=80t+640,当y1=y2时,80t200=80t+640,t=5.2两车在途中第二次相遇时t的值为5.2小时,故弄正确,当t=3时,甲车行的路程为:120km,乙车行的路程为:80(32)=80km,两车相距的路
16、程为:12080=40千米,故正确,故选A10、B【解析】函数y=-2x2的顶点为(0,0),向上平移1个单位,再向右平移1个单位的顶点为(1,1),将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据根与系数的关系得出b2-4ac=(-2)2-41(n-1)=-4n+80,求出n2,再去绝对值符号,即可得出答案【详解】解:关于x的方程x22x+n=
17、1没有实数根,b2-4ac=(-2)2-41(n-1)=-4n+80,n2,|2n |-1-n=n-2-n+1=-1.故答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.12、1【解析】试题分析:因为2+24,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1考点:等腰三角形的性质;三角形三边关系13、【解析】通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解APB【详解】把PAB绕B点顺时针旋转90,得PBC,则PABPBC,设PA=
18、x,PB=2x,PC=3x,连PP,得等腰直角PBP,PP2=(2x)2+(2x)2=8x2,PPB=45又PC2=PP2+PC2,得PPC=90故APB=CPB=45+90=135故答案为135【点睛】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把PAB顺时针旋转90使得A与C点重合是解题的关键14、5【解析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积扇形OCD的面积,利用扇形的面积公式计算即可求解【详解】AOCBOD,阴影部分的面积=扇形OAB的面积扇形OCD的面积5故答案为:5【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形
19、OAB的面积扇形OCD的面积是解题的关键15、y(x+2y)(x-2y)【解析】首先提公因式,再利用平方差进行分解即可【详解】原式故答案是:y(x+2y)(x-2y)【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解16、1【解析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可【详解】a2+b28a4b+20=0,a28a+16+b24b+4=0,(a4)2+(b2)2=0a4=0,b2=0,a=4,b=2,则a2b2=164=1,故答案为1【点睛】本题考查了配方法的
20、应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键17、2x1【解析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集【详解】由得x2,由得x1,不等式组的解集为2x1故答案为:2x1【点睛】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)三、解答题(共7小题,满分69分)18、(1)A(3,0),y=x+;(2)D(t3+,t3),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0),由解析式得
21、C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0t3时,当点M在OB上运动时,即3t4时,进行讨论可求P点坐标【详解】(1)当y=0时,=0,解得x1=1,x2=3,点A在点B的左侧,A(3,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk,故直线l的表达式为y=x+;(2)当点M在AO上运
22、动时,如图:由题意可知AM=t,OM=3t,MCMD,过点D作x轴的垂线垂足为N,DMN+CMO=90,CMO+MCO=90,MCO=DMN,在MCO与DMN中,MCODMN,MN=OC=,DN=OM=3t,D(t3+,t3);同理,当点M在OB上运动时,如图,OM=t3,MCODMN,MN=OC=,ON=t3+,DN=OM=t3,D(t3+,t3)综上得,D(t3+,t3)将D点坐标代入直线解析式得t=62,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,M在AB上运动,当CMAB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即
23、0t3时,tanCBO=,CBO=60,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=3t,AN=t+,NB=4t,tanNBO=,=,解得t=3,经检验t=3是此方程的解,过点P作x轴的垂线交于点Q,易知PQBDNB,BQ=BN=4t=1,PQ=,OQ=2,P(2,);同理,当点M在OB上运动时,即3t4时,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=t3,NB=t3+1=t4+,tanNBD=, =,解得t=3,经检验t=3是此方程的解,t=3(不符合题意,舍)故P(2,)【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾
24、股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度19、(1);(2) 见解析;(3) 【解析】(1)过点C作CEOA交BD于点E,即可得BCEBOD,根据相似三角形的性质可得,再证明ECPDAP,由此即可求得的值;(2)过点D作DFBO交AC于点F,即可得,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得A=APD=BPC,所以tanBPC=tanA=【详解】(1)如图1,过点C作CEOA交
25、BD于点E,BCEBOD,=,又BC=BO,CE=DOCEOA,ECP=DAP,又EPC=DPA,PA=PC,ECPDAP,AD=CE=DO,即 =;(2)如图2,过点D作DFBO交AC于点F,则 =, =点C为OB的中点,BC=OC,=;(3)如图2,=,由(2)可知=设AD=t,则BO=AO=4t,OD=3t,AOBO,即AOB=90,BD=5t,PD=t,PB=4t,PD=AD,A=APD=BPC,则tanBPC=tanA=【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点20、隧道最短为1093米【解析】【分析】作BDAC于D,利用
26、直角三角形的性质和三角函数解答即可【详解】如图,作BDAC于D,由题意可得:BD=14001000=400(米),BAC=30,BCA=45,在RtABD中,tan30=,即,AD=400(米),在RtBCD中,tan45=,即,CD=400(米),AC=AD+CD=400+4001092.81093(米),答:隧道最短为1093米【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.21、(1)60, 90;(2)补图见解析;(3)300;(4).【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以3
27、60,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案详解:(1)60;90.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生
28、男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比22、 (1)1;(1)见解析.【解析】试题分析:(1)根据菱形的对边平行可得ABCD,再根据两直线平行,内错角相等可得1=ACD,所以ACD=1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长
29、度;(1)先利用“边角边”证明CEM和CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明1=G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明CDF和BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证试题解析:(1)四边形ABCD是菱形,ABCD,1=ACD,1=1,ACD=1,MC=MD,MECD,CD=1CE,CE=1,CD=1,BC=CD=1;(1)AM=DF+ME证明:如图,F为边BC的中点, BF=CF=BC,CF=CE,在菱形ABCD中,AC平分BCD,ACB=ACD,在CEM和CFM中,CEMCFM(
30、SAS),ME=MF,延长AB交DF的延长线于点G,ABCD,G=1,1=1,1=G,AM=MG,在CDF和BGF中,CDFBGF(AAS),GF=DF,由图形可知,GM=GF+MF,AM=DF+ME23、(0,),(4,3)【解析】试题分析:()根据“刚出手时离地面高度为米、经过4秒到达离地面3米的高度和经过1秒落到地面”可得三点坐标;()利用待定系数法求解可得试题解析:解:()由题意知,该二次函数图象上的三个点的坐标分别是(0,)、(4,3)、(1,0)故答案为:(0,)、(4,3)、(1,0)()设这个二次函数的解析式为y=ax2+bx+c,将()三点坐标代入,得:,解得:,所以所求抛物线解析式为y=x2+x+,因为铅球从运动员抛出到落地所经过的时间为1秒,所以自变量的取值范围为0x124、(1)见解析;(2)见解析;(3)见解析,.【解析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.