湖北省荆州松滋市重点中学2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc

上传人:lil****205 文档编号:88309882 上传时间:2023-04-25 格式:DOC 页数:20 大小:889KB
返回 下载 相关 举报
湖北省荆州松滋市重点中学2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共20页
湖北省荆州松滋市重点中学2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《湖北省荆州松滋市重点中学2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省荆州松滋市重点中学2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(共10小题,每小题3分,共30分)1如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:ab0;ab;sin=;不等式kxax2+bx的解集是0x1其中正确的是()ABCD2如图是二次函数yax2bxc的图象,其对称轴为x1,下列结论:abc0;2ab0;4a2bc0;若(,y1),(,y2)是抛物线上两点,则y1y2,其中结论正确的是( )ABCD3如图,一艘轮船位于灯塔P的北偏东60方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30方向上的B处,则此时轮船所在位置B与灯塔P之间的距

3、离为( )A60海里B45海里C20海里D30海里4在实数,中,其中最小的实数是()ABCD5如图,在ABC中,ACBC,ABC=30,点D是CB延长线上的一点,且BD=BA,则tanDAC的值为( )AB2CD36小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:AB=BC,ABC=90,AC=BD,ACBD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )ABCD7如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A2B0C1D38如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为

4、顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A(3,1)B(-4,1)C(1,-1)D(-3,1)9如图,边长为2a的等边ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60得到BN,连接HN则在点M运动过程中,线段HN长度的最小值是( )ABaCD10甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系则下列说法正确的是( )A两车同时到达乙地B轿车在行驶过程中进行了提速C货车出发3小时后,轿车追

5、上货车D两车在前80千米的速度相等二、填空题(本大题共6个小题,每小题3分,共18分)11因式分解=_12某校体育室里有球类数量如下表:球类篮球排球足球数量354如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_13如图,在ABC中,C90,BC16 cm,AC12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t_时,CPQ与CBA相似14如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度

6、是 cm15已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_厘米16某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.三、解答题(共8题,共72分)17(8分)(1)计算:(2)2+cos60(2)0;(2)化简:(a) 18(8分)中华文明,源远流长;中华汉字,寓意深广为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50x60100.0560

7、x70300.1570x8040n80x90m0.3590x100500.25根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?19(8分)已知抛物线y=x24x+c经过点A(2,0)(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C若B、C都在抛物线上,求m的值;若点C在第四象限,当AC2的值最小时,求m的值20(8分)如图1,正方形ABCD的边长为8

8、,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM(参考数据:sin15=,cos15=,tan15=2)(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;(2)在点E、F运动过程中,判断AE与AM的数量关系,并说明理由;AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;(3)如图2,连接NF,在点E、F运动过程中,ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由21(8分)综合与探究如图,抛物线y=与x轴交于A,

9、B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD,BD设点M运动的时间为t(t0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由22(10分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度

10、的直尺完成以下作图(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线23(12分)嘉兴市20102014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市20102014年社会消费品零售总额增速这组数据的中位数(2)求嘉兴市近三年(20122014年)的社会消费品零售总额这组数据的平均数(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果)24如图,点A,C,B,D在同一条直线上,BEDF,A=F,AB=FD,求证:AE=FC参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据抛物线

11、图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入,不等式kxax2+bx的解集可以转化为函数图象的高低关系【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a0,b0,则错误将A(1,2)代入y=ax2+bx,则2=9a+1bb=,ab=a()=4a-,故正确;由正弦定义sin=,则正确;不等式kxax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x1或x0,则错误故答案为:B【点睛】二次函数的图像,sin公式,不等式的解集2、C【解析】试题分析:根据题意可得:a0,b0,c0,则abc0,则错误;根据对称轴为x=1可得:=1,则

12、-b=2a,即2a+b=0,则正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则正确.点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则

13、函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.3、D【解析】根据题意得出:B=30,AP=30海里,APB=90,再利用勾股定理得出BP的长,求出答案【详解】解:由题意可得:B=30,AP=30海里,APB=90,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)故选:D【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键4、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了

14、实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小5、A【解析】设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tanDAC的值即可.【详解】设AC=a,则BC=a,AB=2a,BD=BA=2a,CD=(2+)a,tanDAC=2+.故选A.【点睛】本题主要考查特殊角的三角函数值.6、B【解析】A、四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当ABC=90时,菱形ABCD是正方形,故此选项正确,不合题意;B、四边形ABCD是平行四边形,当ABC=90时,平行四边形ABCD是矩形

15、,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、四边形ABCD是平行四边形,当ABC=90时,平行四边形ABCD是矩形,当ACBD时,矩形ABCD是正方形,故此选项正确,不合题意故选C7、B【解析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可【详解】由关于y的不等式组,可整理得 该不等式组解集无解,2a+42即a3

16、又得x而关于x的分式方程有负数解a41a4于是3a4,且a 为整数a3、2、1、1、1、2、3则符合条件的所有整数a的和为1故选B【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键8、B【解析】作出图形,结合图形进行分析可得.【详解】如图所示:以AC为对角线,可以画出AFCB,F(-3,1);以AB为对角线,可以画出ACBE,E(1,-1);以BC为对角线,可以画出ACDB,D(3,1),故选B.9、A【解析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可

17、得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=2a=a,MG=CG=a=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角

18、形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点10、B【解析】根据函数的图象即可直接得出结论;求得直线OA和DC的解析式,求得交点坐标即可;由图象无法求得B的横坐标;分别进行运算即可得出结论.【详解】由题意和图可得,轿车先到达乙地,故选项A错误,轿车在行驶过程中进行了提速,故选项B正确,货车的速度是:300560千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,设货车对应的函数解析式为ykx,5k300,得k60,即货车对应的函数解析式为y60x,设CD段轿车对应的函数解析式为yaxb,得,即CD段轿车对应的函数解析式为y110x195,令60

19、x110x195,得x3.9,即货车出发3.9小时后,轿车追上货车,故选项C错误,故选:B【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】解:=,故答案为:12、【解析】先求出球的总数,再用足球数除以总数即为所求.【详解】解:一共有球3+5+4=12(个),其中足球有4个,拿出一个球是足球的可能性=.【点睛】本题考查了概率,属于简单题,熟悉概率概念,列出式子是解题关键.13、4.8或【解析】根据题意可分两种情况,当CP和CB是对应边时,CPQCBA与CP和CA是对应边时,CPQCAB,根据相似三角形的性质

20、分别求出时间t即可.【详解】CP和CB是对应边时,CPQCBA,所以,即,解得t4.8;CP和CA是对应边时,CPQCAB,所以,即,解得t.综上所述,当t4.8或时,CPQ与CBA相似【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.14、4【解析】已知弧长即已知围成的圆锥的底面半径的长是6cm,这样就求出底面圆的半径扇形的半径为5cm就是圆锥的母线长是5cm就可以根据勾股定理求出圆锥的高【详解】设底面圆的半径是r,则2r=6,r=3cm,圆锥的高=4cm故答案为4.15、1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关

21、系求得圆心距即可【详解】解:两圆的半径分别为2和5,两圆内切,dRr521cm,故答案为1【点睛】此题考查了圆与圆的位置关系解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系16、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,

22、增长用+,减少用-但要注意解的取舍,及每一次增长的基础三、解答题(共8题,共72分)17、(1);(2);【解析】(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题【详解】解:(1)原式 (2)原式 【点睛】本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法18、(1)70,0.2;(2)补图见解析;(3)80x90;(4)750人.【解析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n

23、的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可详解:(1)本次调查的总人数为100.05=200,则m=2000.35=70,n=40200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80x90,这200名学生成绩的中位数会落在80x90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:30000.25=750(人

24、)点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了中位数和利用样本估计总体19、(1)抛物线解析式为y=x24x+12,顶点坐标为(2,16);(2)m=2或m=2;m的值为 【解析】分析:(1)把点A(2,0)代入抛物线y=x24x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)由B(m,n)在抛物线上可得m24m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(m,n),又因C落在抛物线上,可得m2+4m+12=n,即m24m1

25、2=n,所以m2+4m+12=m24m12,解方程求得m的值即可;已知点C(m,n)在第四象限,可得m0,n0,即m0,n0,再由抛物线顶点坐标为(2,16),即可得0n16,因为点B在抛物线上,所以m24m+12=n,可得m2+4m=n+12,由A(2,0),C(m,n),可得AC2=(m2)2+(n)2=m2+4m+4+n2=n2n+16=(n)2+,所以当n=时,AC2有最小值,即m24m+12=,解方程求得m的值,再由m0即可确定m的值详解:(1)抛物线y=x24x+c经过点A(2,0),48+c=0,即c=12,抛物线解析式为y=x24x+12=(x+2)2+16,则顶点坐标为(2,

26、16);(2)由B(m,n)在抛物线上可得:m24m+12=n,点B关于原点的对称点为C,C(m,n),C落在抛物线上,m2+4m+12=n,即m24m12=n,解得:m2+4m+12=m24m12,解得:m=2或m=2;点C(m,n)在第四象限,m0,n0,即m0,n0,抛物线顶点坐标为(2,16),0n16,点B在抛物线上,m24m+12=n,m2+4m=n+12,A(2,0),C(m,n),AC2=(m2)2+(n)2=m2+4m+4+n2=n2n+16=(n)2+,当n=时,AC2有最小值,m24m+12=,解得:m=,m0,m=不合题意,舍去,则m的值为点睛:本题是二次函数综合题,第

27、(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.20、(1)EFBD,见解析;(2)AE=AM,理由见解析;AEM能为等边三角形,理由见解析;(3)ANF的面积不变,理由见解析【解析】(1)依据DE=BF,DEBF,可得到四边形DBFE是平行四边形,进而得出EFDB;(2)依据已知条件判定ADEABM,即可得到AE=AM;若AEM是等边三角形,则EAM=60,依据ADEABM,可得DAE=BAM=15,即可

28、得到DE=16-8,即当DE=168时,AEM是等边三角形;(3)设DE=x,过点N作NPAB,反向延长PN交CD于点Q,则NQCD,依据DENBNA,即可得出PN=,根据SANF=AFPN=(x+8)=32,可得ANF的面积不变【详解】解:(1)EFBD证明:动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,DE=BF,又DEBF,四边形DBFE是平行四边形,EFDB;(2)AE=AMEFBD,F=ABD=45,MB=BF=DE,正方形ABCD,ADC=ABC=90,AB=AD,ADEABM,AE=AM;AEM能为等边三角形若AEM是等边三角形,则EAM

29、=60,ADEABM,DAE=BAM=15,tanDAE=,AD=8,2=,DE=168,即当DE=168时,AEM是等边三角形;(3)ANF的面积不变设DE=x,过点N作NPAB,反向延长PN交CD于点Q,则NQCD,CDAB,DENBNA,=,PN=,SANF=AFPN=(x+8)=32,即ANF的面积不变【点睛】本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论21、(1)A(3,0),y=

30、x+;(2)D(t3+,t3),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0t3时,当点M在OB上运动时,即3t4时,进行讨论可求P点坐标【详解】(1)当y=0时,=0,解得x1=1,x2=3,点A在点B的左侧,A(3

31、,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk,故直线l的表达式为y=x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3t,MCMD,过点D作x轴的垂线垂足为N,DMN+CMO=90,CMO+MCO=90,MCO=DMN,在MCO与DMN中,MCODMN,MN=OC=,DN=OM=3t,D(t3+,t3);同理,当点M在OB上运动时,如图,OM=t3,MCODMN,MN=OC=,ON=t3+,DN=OM=t3,D(t3+,t3)综上得,D(t3+,t3)将D点坐标代入直线解析式得t=62,线段CD是等腰直角三角形CM

32、D斜边,若CD最小,则CM最小,M在AB上运动,当CMAB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0t3时,tanCBO=,CBO=60,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=3t,AN=t+,NB=4t,tanNBO=,=,解得t=3,经检验t=3是此方程的解,过点P作x轴的垂线交于点Q,易知PQBDNB,BQ=BN=4t=1,PQ=,OQ=2,P(2,);同理,当点M在OB上运动时,即3t4时,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=t3,NB=t3+1=t4+

33、,tanNBD=, =,解得t=3,经检验t=3是此方程的解,t=3(不符合题意,舍)故P(2,)【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度22、(1)作图见解析;(2)作图见解析.【解析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):23、(115)这组数据的中位数为15.116%;(116)这组数据的平均数是115 11609.116亿元;(15)116016年社会消费品零售总额为115 15167

34、(11515.116%)亿元【解析】试题分析:(115)根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案;(116)根据平均数的定义,求解即可;(15)根据增长率的中位数,可得116016年的销售额试题解析:解:(115)数据从小到大排列11516%,1165%,15116%,16115%,57%,则嘉兴市1160115116015年社会消费品零售总额增速这组数据的中位数是15116%;(116)嘉兴市近三年(1160116116015年)的社会消费品零售总额这组数据的平均数是:(616+76+5157+99+11500)5=11575116(亿元);(15)从增速中位数分析,嘉兴市116016年社会消费品零售总额为1150(115+15116%)=16158116716(亿元)考点:115折线统计图;116条形统计图;15算术平均数;16中位数24、证明见解析.【解析】由已知条件BEDF,可得出ABE=D,再利用ASA证明ABEFDC即可证明:BEDF,ABE=D,在ABE和FDC中,ABE=D,AB=FD,A=FABEFDC(ASA),AE=FC“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证ABC和FDC全等

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁