《湖南省株洲市炎陵县2023届中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省株洲市炎陵县2023届中考数学押题试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,若ABC内接于半径为R的O,且A60,连接OB、OC,则边BC的长为()ABCD2为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了
2、如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是 A180个,160个B170个,160个C170个,180个D160个,200个3如图,在ABC中,ACB90,CDAB于点D,则图中相似三角形共有()A1对B2对C3对D4对4如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”下列各组数据中,能作为一个智慧三角形三边长的一组是()A1,2,3B1,1,C1,1,D1,2,5如图,在RtABC中,ACB=90,A=30,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A B1 C D6如图,两张完全相同的正六边形
3、纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A5:2B3:2C3:1D2:17如图是由7个同样大小的正方体摆成的几何体将正方体移走后,所得几何体()A主视图不变,左视图不变B左视图改变,俯视图改变C主视图改变,俯视图改变D俯视图不变,左视图改变8有下列四种说法:半径确定了,圆就确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种9如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )AAB=ADBAC平分BCDCAB=BDDBECDEC10为了解某小
4、区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A极差是3.5B众数是1.5C中位数是3D平均数是3二、填空题(本大题共6个小题,每小题3分,共18分)11如果当a0,b0,且ab时,将直线y=ax+b和直线y=bx+a称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:_12已知二次函数yax2+bx+c中,函数y与自变量x的部分对应值如表所示:x54321y83010当y3时,x的取值范围是_13
5、已知数据x1,x2,xn的平均数是,则一组新数据x1+8,x2+8,xn+8的平均数是_.14如图,1,2是四边形ABCD的两个外角,且1+2210,则A+D_度.15若一元二次方程x22xm=0无实数根,则一次函数y=(m+1)x+m1的图象不经过第_象限16若点M(k1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k1)x+k的图象不经过第 象限三、解答题(共8题,共72分)17(8分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍具体情况如下表:甲种乙种丙种进价(元/台)120016002000售价(元/台)1420186022
6、80经预算,商场最多支出132000元用于购买这批电冰箱(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?18(8分)我国古代算法统宗里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?19(8分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆如图所示,已知:I是ABC的BC边上的旁切圆,E、F分别是切点,
7、ADIC于点D(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论(2)设AB=AC=5,BC=6,如果DIE和AEF的面积之比等于m,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程20(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间21(8分)如图,AB是O的直径,点E是上的一点,DBC=BED(1)请判断直线BC与O的位
8、置关系,并说明理由;(2)已知AD=5,CD=4,求BC的长22(10分)如图,AB为O的直径,点C,D在O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E(1)求证:EF是O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长23(12分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,)(1)求抛物线的表达式(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也
9、随之停止运动设S=PQ2(cm2)试求出S与运动时间t之间的函数关系式,并写出t的取值范围;当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标24如图,已知反比例函数y的图象与一次函数yx+b的图象交于点A(1,4),点B(4,n)求n和b的值;求OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】延长BO交圆于D,连接CD,则BCD=90,D=A=60;
10、又BD=2R,根据锐角三角函数的定义得BC=R.【详解】解:延长BO交O于D,连接CD,则BCD=90,D=A=60,CBD=30,BD=2R,DC=R,BC=R,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.2、B【解析】根据中位数和众数的定义分别进行解答即可【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(
11、或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数3、C【解析】ACB=90,CDAB,ABCACD,ACDCBD,ABCCBD,所以有三对相似三角形故选C4、D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120,底角30的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,依此即可作出判定【详解】1+2=3,不能构成三角形,故选项错误;B、12+12=()2,是等腰直角三角
12、形,故选项错误;C、底边上的高是=,可知是顶角120,底角30的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,其中9030=3,符合“智慧三角形”的定义,故选项正确故选D5、B【解析】根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是ACD的中位线即可求出.【详解】ACB=90,A=30, BC=AB. BC=2, AB=2BC=22=4, D是AB的中点, CD=AB= 4=2. E,F分别为AC,AD的中点, EF是ACD的中位线. EF=CD= 2=1.故答案选B.【点睛】本题考查的知识点是三角形中位线定理,解题的关键是熟练的
13、掌握三角形中位线定理.6、C【解析】求出正六边形和阴影部分的面积即可解决问题;【详解】解:正六边形的面积,阴影部分的面积,空白部分与阴影部分面积之比是:1,故选C【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型7、A【解析】分别得到将正方体移走前后的三视图,依此即可作出判断【详解】将正方体移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。将正方体移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体移走后的左视图为:第一层有一个正方形,第二
14、层有两个正方形,没有发生改变。将正方体移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.【点睛】考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.8、B【解析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧
15、,每一条弧都叫半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆9、C【解析】解:AC垂直平分BD,AB=AD,BC=CD,AC平分BCD,平分BCD,BE=DEBCE=DCE在RtBCE和RtDCE中,BE=DE,BC=DC,RtBCERtDCE(HL)选项ABD都一定成立故选C10、C【解析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为51.5=3.5,此选项正确;B.1.5个数最多,为2
16、个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为(2.5+3)=2.75,此选项错误;D.平均数为:(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】把(1,4)代入两函数表达式可得:a+b=4,再根据“对偶直线”的定义,即可确定a、b的值.【详解】把(1,4)代入得:a+b=4又因为,且,所以当a=1
17、是b=3所以“对偶点”为(1,4)的一对“对偶直线”可以是:故答案为【点睛】此题为新定义题型,关键是理解新定义,并按照新定义的要求解答.12、x4或x1【解析】观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y-3时,x的取值范围即可【详解】由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,且x=1时,y=-3,所以,y-3时,x的取值范围为x-4或x1故答案为x-4或x1【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键13、【解析】根据数据x1,x2,xn的平均数为=(x1
18、+x2+xn),即可求出数据x1+1,x2+1,xn+1的平均数【详解】数据x1+1,x2+1,xn+1的平均数=(x1+1+x2+1+xn+1)=(x1+x2+xn)+1=+1故答案为+1【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标14、210.【解析】利用邻补角的定义求出ABC+BCD,再利用四边形内角和定理求得A+D.【详解】1+2210,ABC+BCD1802210150,A+D360150210.故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定
19、义求出ABC+BCD是关键.15、一【解析】一元二次方程x2-2x-m=0无实数根,=4+4m0,解得m-1,m+10,m-10,一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限故答案是:一16、一【解析】试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案点M(k1,k+1)关于y轴的对称点在第四象限内, 点M(k1,k+1)位于第三象限,k10且k+10, 解得:k1,y=(k1)x+k经过第二、三、四象限,不经过第一象限考点:一次函数的性质三、解答题(共8题,共72分)17、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电
20、冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台【解析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得【详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(803x)台根据题意得:12002x+1600x+2000(803x)132000,解得:x14,商场至少购进乙种电冰箱14台;(2)由题意得:2x803x且x14,
21、14x16,W=2202x+260x+280(803x)=140x+22400,W随x的增大而减小,当x=14时,W取最大值,且W最大=14014+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台【点睛】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式18、客房8间,房客63人【解析】设该店有间客房,以人数相等为等量关系列出方程即可.【详解】设该店有间客房,则 解得 答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到
22、等量关系式是解题的关键19、 (1) D、E、F三点是同在一条直线上(2) 6x213x+6=1【解析】(1)利用切线长定理及梅氏定理即可求证;(2)利用相似和韦达定理即可求解.解:(1)结论:D、E、F三点是同在一条直线上 证明:分别延长AD、BC交于点K,由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,再由切线长定理得:AC+CE=AF,BE=BF, KE=AF,由梅涅劳斯定理的逆定理可证,D、E、F三点共线,即D、E、F三点共线 (2)AB=AC=5,BC=6,A、E、I三点共线,CE=BE=3,AE=4,连接IF,则ABEAIF,ADICEI,A、F、I、D四点共圆 设I的半径
23、为r,则:,即,由AEFDEI得:,因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x213x+6=1 点睛:本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.20、(4)500;(4)440,作图见试题解析;(4)4.4【解析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,本次调查共抽样了500名学生; (4)4.5小时的人数
24、为:5004.4=440(人),如图所示:(4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时考点:4频数(率)分布直方图;4扇形统计图;4加权平均数21、(1)BC与相切;理由见解析;(2)BC=6【解析】试题分析:(1)BC与相切;由已知可得BAD=BED又由DBC=BED可得BAD=DBC,由AB为直径可得ADB=90,从而可得CBO=90,继而可得BC与相切(2)由AB为直径可得ADB=90,从而可得BDC=90,由BC与相切,可得CBO=90,从而可得BDC=CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC=-6 舍去)试题解析:(1)B
25、C与相切;,BAD=BED ,DBC=BED,BAD=DBC,AB为直径,ADB=90,BAD+ABD=90,DBC+ABD=90,CBO=90,点B在上,BC与相切(2)AB为直径,ADB=90,BDC=90,BC与相切,CBO=90,BDC=CBO,AC=9,BC=6(BC=-6 舍去)考点:1切线的判定与性质;2相似三角形的判定与性质;3勾股定理22、(1)证明见解析(2)【解析】(1)连接OC,根据等腰三角形的性质、平行线的判定得到OCAE,得到OCEF,根据切线的判定定理证明;(2)根据勾股定理求出AC,证明AECACB,根据相似三角形的性质列出比例式,计算即可【详解】(1)证明:连
26、接OC,OA=OC,OCA=BAC,点C是的中点,EAC=BAC,EAC=OCA,OCAE,AEEF,OCEF,即EF是O的切线;(2)解:AB为O的直径,BCA=90,AC=4,EAC=BAC,AEC=ACB=90,AECACB,AE=【点睛】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键23、(1)抛物线的解析式为:;(2)S与运动时间t之间的函数关系式是S=5t28t+4,t的取值范围是0t1;存在.R点的坐标是(3,);(3)M的坐标为(1,)【解析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B
27、、D的坐标代入即可;(2)由勾股定理即可求出;假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标试题解析:(1)设抛物线的解析式是y=ax2+bx+c,正方形的边长2,B的坐标(2,2)A点的坐标是(0,2),把A(0,2),B(2,2),D(4,)代入得:,解得a=,b=,c=2,抛物线的解析式为:,答:抛物线的解析式为:;(2)由图象知:PB=22t,B
28、Q=t,S=PQ2=PB2+BQ2,=(22t)2+t2,即S=5t28t+4(0t1)答:S与运动时间t之间的函数关系式是S=5t28t+4,t的取值范围是0t1;假设存在点R,可构成以P、B、R、Q为顶点的平行四边形S=5t28t+4(0t1),当S=时,5t28t+4=,得20t232t+11=0,解得t=,t=(不合题意,舍去),此时点P的坐标为(1,2),Q点的坐标为(2,),若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQPB,则R的横坐标为3,R的纵坐标为,即R(3,),代入,左右两边相等,这时存在R(3,)满足题意;(ii)假设R在QB的左边时,
29、这时PR=QB,PRQB,则R(1,)代入,左右不相等,R不在抛物线上(1分)综上所述,存点一点R(3,)满足题意答:存在,R点的坐标是(3,);(3)如图,MB=MA,A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,理由是:MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,|MB|MD|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,解得:k=,b=,y=x,抛物线的对称轴是x=1,把x=1代入得:y=M的坐标为(1,);答:M的坐标为(1,)考点:二次函数综合题24、(1)-1;(
30、2);(3)x1或4x0. 【解析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线yx+3与y轴的交点为C,由SAOB=SAOC+SBOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y,一次函数yx+b,得k14,1+b4,解得k4,b3,点B(4,n)也在反比例函数y的图象上,n1;(2)如图,设直线yx+3与y轴的交点为C,当x0时,y3,C(0,3),SAOBSAOC+SBOC31+347.5,(3)B(4,1),A(1,4),根据图象可知:当x1或4x0时,一次函数值大于反比例函数值【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y中k的几何意义,这里体现了数形结合的思想