河北省石家庄市部分校2022-2023学年中考数学四模试卷含解析.doc

上传人:lil****205 文档编号:88309844 上传时间:2023-04-25 格式:DOC 页数:23 大小:1.03MB
返回 下载 相关 举报
河北省石家庄市部分校2022-2023学年中考数学四模试卷含解析.doc_第1页
第1页 / 共23页
河北省石家庄市部分校2022-2023学年中考数学四模试卷含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《河北省石家庄市部分校2022-2023学年中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省石家庄市部分校2022-2023学年中考数学四模试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A25和30B25和29C28

2、和30D28和292如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)3如图,已知ABC的三个顶点均在格点上,则cosA的值为( )ABCD4关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D-5九章算术是我国古代内容极为丰富的数学名著书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“

3、今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A3步B5步C6步D8步6如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D7下列说法不正确的是( )A选举中,人们通常最关心的数据是众数B从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D数据3,5,4,1,2的中位数是48如图钓鱼竿AC长6m,露在水

4、面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15到AC的位置,此时露在水面上的鱼线BC长度是()A3mB mC mD4m9如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(3,2),则该圆弧所在圆心坐标是()A(0,0)B(2,1)C(2,1)D(0,1)10如图,在RtABC中,ACB90,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知点P在一次函数y=kx+b(k,b为常数,且k0,b0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在

5、该函数y=kx+b的图象上(1)k的值是 ;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CEx轴于点E,记S1为四边形CEOB的面积,S2为OAB的面积,若=,则b的值是 12如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则ABC的面积为_13已知O半径为1,A、B在O上,且,则AB所对的圆周角为_o.14如图,AC是以AB为直径的O的弦,点D是O上的一点,过点D作O的切线交直线AC于点E,AD平分BAE,若AB=10,DE=3

6、,则AE的长为_15肥皂泡的泡壁厚度大约是,用科学记数法表示为 _16如图,已知ABC和ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB4,则OE的最小值为_三、解答题(共8题,共72分)17(8分)如图,点A的坐标为(4,0),点B的坐标为(0,2),把点A绕点B顺时针旋转90得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使

7、得QPO=OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标18(8分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米)19(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60,试通过计算求

8、出文峰塔的高度CD(结果保留两位小数)20(8分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知求楼间距AB;若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,21(8分)问题提出(1)如图1,正方形ABCD的对角线交于点O,CDE是边长为6的等边三角形,则O、E之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距

9、离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MNAD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离22(10分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),

10、点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)23(12分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为_;最小值为 _.图 (2)如图2,ABC是葛叔叔家的菜地示意图,其中ABC=90,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积

11、尽可能大、周长尽可能长的四边形地,用来建鱼塘已知葛叔叔想建的鱼塘是四边形ABCD,且满足ADC=60,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由图 24如图,ABCD,EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分FGD若EFG=90,E=35,求EFB的度数参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,这组数据的中位数是28,在这组数据中,29出现的次数

12、最多,这组数据的众数是29,故选D【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.2、D【解析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.3、D【解析】过B点作BDAC,如图,由勾股定理得,AB=,AD=,cosA=,故选D4

13、、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小5、C【解析】试题解析:根据勾股定理得:斜边为 则该直角三角形能容纳的圆形(内切圆)半径 (步),即直径为6步,故选C6、C【解析】作MHAC于H,如图,根据正方形的性质得MAH=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC

14、=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角

15、形也考查了角平分线的性质和正方形的性质7、D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;D、数据3,5,4,1,2由小到大排列为2,1,3,4,5,所以中位数是3,所以D选项的说法错误故选D考点:随机事件发生的可能性(概率)的计算方法8、B【解析】因为三角形ABC和三角形ABC均为直角

16、三角形,且BC、BC都是我们所要求角的对边,所以根据正弦来解题,求出CAB,进而得出CAB的度数,然后可以求出鱼线BC长度【详解】解:sinCABCAB45CAC15,CAB60sin60,解得:BC3故选:B【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题9、C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心点A的坐标为(3,2),点O的坐标为(2,1)故选C10、D【解析】根据直角三角形斜边上的中线等于斜边的一半可得CDAD,再根据等边对等角的性质可得AACD,然后根据正切函数的定义列式求出A的正切值,即为tanACD的值

17、【详解】CD是AB边上的中线,CDAD,AACD,ACB90,BC6,AC8,tanA,tanACD的值故选D【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出AACD是解本题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、(1)-2;(2)【解析】(1)设点P的坐标为(m,n),则点Q的坐标为(m1,n+2),依题意得:,解得:k=2.故答案为2.(2)BOx轴,CEx轴,BOCE,AOBAEC.又, 令一次函数y=2x+b中x=0,则y=b,BO=b;令一次函数y=2x+b中y=0,则0=2x+b,解得:x=,即AO=.

18、AOBAEC,且,,AE=,AO=,CE=BO=b,OE=AEAO=.OECE=|4|=4,即=4,解得:b=,或b= (舍去).故答案为.12、1【解析】设P(0,b),直线APBx轴,A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,当y=b,x=-,即A点坐标为(-,b),又点B在反比例函数y=的图象上,当y=b,x=,即B点坐标为(,b),AB=-(-)=,SABC=ABOP=b=113、45或135【解析】试题解析:如图所示,OCAB,C为AB的中点,即在RtAOC中,OA=1, 根据勾股定理得:即OC=AC,AOC为等腰直角三角形,同理AOB与ADB都对,大角则弦AB所对的

19、圆周角为或故答案为或14、1或9【解析】(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示ODOA,OADODA,AD平分BAE,OADODADAC,OD/AE,DE是圆的切线,DEOD,ODE=E=90o,四边形ODEF是矩形,OFDE,EFOD5,又OFAC,AF,AEAF+EF5+49.(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示同(1)可得:EFOD5,OFDE3,在直角三角形AOF中,AF,AEEFAF541.15、710-1【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数

20、幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.0007=710-1故答案为:710-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定16、1【解析】根据等边三角形的性质可得OCAC,ABD30,根据“SAS”可证ABDACE,可得ACE30ABD,当OEEC时,OE的长度最小,根据直角三角形的性质可求OE的最小值【详解】解:ABC的等边三角形,点O是AC的中点,OCAC,ABD30ABC和ADE均为等边三角形,ABAC,ADAE,BACDAE60,BADCAE,且ABAC,ADAE

21、,ABDACE(SAS)ACE30ABD当OEEC时,OE的长度最小,OEC90,ACE30OE最小值OCAB1,故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键三、解答题(共8题,共72分)17、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),【解析】(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此

22、时P的坐标即可;(3)存在这样的点P,使得QPO=OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标【详解】解:(1)设直线AB解析式为y=kx+b,把A(4,0),B(0,2)代入得:,解得:,直线AB的解析式为y=x2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=;(2)连接BQ,则易得PQOB,且PQ=OB,四边形PQBO是平行四边形,OP=BQ,OP+AQ=BQ+AQAB=2,(等号成立的条件是点Q在线段AB上),直线AB的解析式为y=x2,可设此时点Q的坐标为(t,t2),于是,

23、此时点P的坐标为(t,t),点P在抛物线y=x2上,t=t2,解得:t=0或t=1,当t=0,点P与点O重合,不合题意,应舍去,OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),则tanHPO=,又,易得tanOBC=,当tanHPO=tanOBC时,可使得QPO=OBC,于是,得,解得:m=4,所以P(4,8)或(4,8)【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键18、 (1

24、)坡顶到地面的距离为米;移动信号发射塔的高度约为米【解析】延长BC交OP于H.在RtAPD中解直角三角形求出AD10.PD24.由题意BHPH.设BCx.则x+1024+DH.推出ACDHx14.在RtABC中.根据tan76,构建方程求出x即可.【详解】延长BC交OP于H斜坡AP的坡度为1:2.4,设AD5k,则PD12k,由勾股定理,得AP13k,13k26,解得k2,AD10,BCAC,ACPO,BHPO,四边形ADHC是矩形,CHAD10,ACDH,BPD45,PHBH,设BCx,则x+1024+DH,ACDHx14,在RtABC中,tan76,即4.1解得:x18.7,经检验x18.

25、7是原方程的解答:古塔BC的高度约为18.7米【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形19、51.96米【解析】先根据三角形外角的性质得出ACB=30,进而得出AB=BC=1,在RtBDC中,,即可求出CD的长【详解】解:CBD=1,CAB=30,ACB=30AB=BC=1在RtBDC中,(米)答:文峰塔的高度CD约为51.96米【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答20、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以

26、下会受到挡光的影响【解析】如图,作于M,于则,设想办法构建方程即可解决问题求出AC,AD,分两种情形解决问题即可【详解】解:如图,作于M,于则,设在中,在中,的长为50m由可知:,冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型21、(1);(2);(2)小贝的说法正确,理由见解析,【解析】(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;(2)补全O,连接AO并延长交O右半侧于点P,则此时A、P之间的距离最大,在RtAOD中,

27、由勾股定理可得AO长,易求AP长;(1)小贝的说法正确,补全弓形弧AD所在的O,连接ON,OA,OD,过点O作OEAB于点E,连接BO并延长交O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在RtANO中,设AO=r,由勾股定理可求出r,在RtOEB中,由勾股定理可得BO长,易知BP长.【详解】解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OCDCE为等边三角形,ED=EC,OD=OCOE垂直平分DC,DHDC=1四边形ABCD为正方形,OHD为等腰直角三角形,OH=DH=1,在RtDHE中,HEDH=1,OE=HE+OH=11;(2)

28、如图2,补全O,连接AO并延长交O右半侧于点P,则此时A、P之间的距离最大,在RtAOD中,AD=6,DO=1,AO1, AP=AO+OP=11;(1)小贝的说法正确理由如下,如图1,补全弓形弧AD所在的O,连接ON,OA,OD,过点O作OEAB于点E,连接BO并延长交O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,由题意知,点N为AD的中点,ANAD=1.6,ONAD,在RtANO中,设AO=r,则ON=r1.2AN2+ON2=AO2,1.62+(r1.2)2=r2,解得:r,AE=ON1.2,在RtOEB中,OE=AN=1.6,BE=ABAE,BO,BP=BO+P

29、O,门角B到门窗弓形弧AD的最大距离为【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.22、()点P的坐标为(,1)()(0t11)()点P的坐标为(,1)或(,1)【解析】()根据题意得,OBP=90,OB=1,在RtOBP中,由BOP=30,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,QCPQCP,易证得OBPPCQ,然后由相

30、似三角形的对应边成比例,即可求得答案()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与,即可求得t的值:【详解】()根据题意,OBP=90,OB=1在RtOBP中,由BOP=30,BP=t,得OP=2tOP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=(舍去)点P的坐标为(,1)()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP,QCPQCPOPB=OPB,QPC=QPCOPB+OPB+QPC+QPC=180,OPB+QPC=90BOP+OPB=90,BOP=CPQ又OBP=C=90,OBPPCQ由题

31、意设BP=t,AQ=m,BC=11,AC=1,则PC=11t,CQ=1m(0t11)()点P的坐标为(,1)或(,1)过点P作PEOA于E,PEA=QAC=90PCE+EPC=90PCE+QCA=90,EPC=QCAPCECQAPC=PC=11t,PE=OB=1,AQ=m,CQ=CQ=1m,即,即将代入,并化简,得解得:点P的坐标为(,1)或(,1)23、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.【解析】(1)当AB是过P点的直径时,AB最长;当ABOP时,AB最短,分别求出即可.(2)如图在ABC的一侧以AC为边做等边三角

32、形AEC,再做AEC的外接圆,则满足ADC=60的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,SADC最大值=SAEC,由SABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.【详解】(1)(1)当AB是过P点的直径时,AB最长=22=4;当ABOP时,AB最短, AP=AB=2(2)如图,在ABC的一侧以AC为边做等边三角形AEC,再做AEC的外接圆,当D与E重合时,SADC最大故此时四边形ABCD的面积最大,ABC=90,AB=80,BC=60AC=周长为AB+BC+CD+AE=80+60+100+100=340(米)SAD

33、C=SABC=四边形ABCD面积最大值为(2500+2400)平方米.【点睛】此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.24、20【解析】依据三角形内角和定理可得FGH=55,再根据GE平分FGD,ABCD,即可得到FHG=HGD=FGH=55,再根据FHG是EFH的外角,即可得出EFB=55-35=20【详解】EFG=90,E=35,FGH=55,GE平分FGD,ABCD,FHG=HGD=FGH=55,FHG是EFH的外角,EFB=5535=20【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁