《湖北省恩施重点达标名校2023年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省恩施重点达标名校2023年中考数学最后冲刺模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列实数中是无理数的是()AB22C5.Dsin452如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()ABCD3PM2.5是指大气中直径小于或等于2.5m(1m=0.000
2、001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害2.5m用科学记数法可表示为( )ABCD4据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A3.386108B0.3386109C33.86107D3.3861095关于反比例函数y=,下列说法中错误的是()A它的图象是双曲线B它的图象在第一、三象限Cy的值随x的值增大而减小D若点(a,b)在它的图象上,则点(b,a)也在它的图象上6如图,已知AB是O的直径,弦CDAB于E,
3、连接BC、BD、AC,下列结论中不一定正确的是()AACB=90BOE=BECBD=BCD7如图,从圆外一点引圆的两条切线,切点分别为,如果, ,那么弦AB的长是( )ABCD8关于x的方程=无解,则k的值为()A0或B1C2D39如图图形中,既是中心对称图形又是轴对称图形的是()ABCD10如图,在ABCD中,AB1,AC4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F若ACAB,则FD的长为()A2B3C4D611中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中孙子算经中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有
4、若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程( )ABCD12如图,A、B、C三点在正方形网格线的交点处,若将ABC绕着点A逆时针旋转得到ACB,则tanB的值为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,CD是O直径,AB是弦,若CDAB,BCD=25,则AOD=_14平面直角坐标系中一点P(m3,12m)在第三象限,则m的取值范围是_15如图,O的半径为2,AB为O的直径,P为AB延长线上一点,过点P作O的切线,切点为C若PC=2,则BC的长为_16中国古代的数学专著
5、九章算术有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻互换其中一只,恰好一样重”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为_17圆锥体的底面周长为6,侧面积为12,则该圆锥体的高为 18如图,在圆心角为90的扇形OAB中,半径OA=1cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_cm1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简,然后从中选出一个合适的整数作为的值代入求值20(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条
6、形统计图根据图中信息解答下列问题:该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?21(6分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,AOB=66,求细线OB的长度(参考数据:sin660.91,cos660.40,tan662.25)22(8分)计算:-2-2 - + 023(8分)列方程或方程组解应用题:去年暑期,某
7、地由于暴雨导致电路中断,该地供电局组织电工进行抢修供电局距离抢修工地15千米抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度24(10分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值25(10分)我市计划将某村的居民自来水管道进行改造该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,
8、乙队每天的施工费用为3500元为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成则该工程施工费用是多少?26(12分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:销售时段销售数量销售收入种型号种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润销售收入进货成本)(1)求、两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这5
9、0台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.27(12分)已知关于x的一元二次方程x26x+(2m+1)=0有实数根求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x220,求m的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D2、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到
10、的图形判定则可详解:从左边看竖直叠放2个正方形故选:C点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项3、C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数考点:用科学计数法计数4、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:数字338 600 000用科学记数
11、法可简洁表示为3.386108故选:A【点睛】本题考查科学记数法表示较大的数5、C【解析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答【详解】A反比例函数的图像是双曲线,正确;Bk=20,图象位于一、三象限,正确;C在每一象限内,y的值随x的增大而减小,错误;Dab=ba,若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确故选C【点睛】本题主要考查反比例函数的性质注意:反比例函数的增减性只指在同一象限内6、B【解析】根据垂径定理及圆周角定理进行解答即可【详解】AB是O的直径,ACB=90,故A正确;点E不一定是OB的中点,OE与BE的关系不能确定,
12、故B错误;ABCD,AB是O的直径,BD=BC,故C正确;,故D正确故选B【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键7、C【解析】先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解【详解】解:,PB为的切线,为等边三角形,故选C【点睛】本题考查切线长定理,掌握切线长定理是解题的关键8、A【解析】方程两边同乘2x(x+3),得x+3=2kx,(2k-1)x=3,方程无解,当整式方程无解时,2k-1=0,k=,当分式方程无解时,x=0时,k无解,x=-3时,k=0,k=0或时,方程无解,故选A.9、A【解析】A. 是轴
13、对称图形,是中心对称图形,故本选项正确;B. 是中心对称图,不是轴对称图形,故本选项错误;C. 不是中心对称图,是轴对称图形,故本选项错误;D. 不是轴对称图形,是中心对称图形,故本选项错误。故选A.10、C【解析】利用平行四边形的性质得出ADFEBF,得出=,再根据勾股定理求出BO的长,进而得出答案【详解】解:在ABCD中,对角线AC、BD相交于O,BO=DO,AO=OC,ADBC,ADFEBF,=,AC=4,AO=2,AB=1,ACAB,BO=3,BD=6,E是BC的中点,=,BF=2, FD=4.故选C.【点睛】本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与
14、相似三角形的判定与性质.11、A【解析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可【详解】设有x辆车,则可列方程:3(x-2)=2x+1故选:A【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键12、D【解析】过C点作CDAB,垂足为D,根据旋转性质可知,B=B,把求tanB的问题,转化为在RtBCD中求tanB【详解】过C点作CDAB,垂足为D根据旋转性质可知,B=B在RtBCD中,tanB=,tanB=tanB=故选D【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法二、填空
15、题:(本大题共6个小题,每小题4分,共24分)13、50【解析】由CD是O的直径,弦ABCD,根据垂径定理的即可求得=,又由圆周角定理,可得AOD=50【详解】CD是O的直径,弦ABCD,=,BCD=25=,AOD=2BCD=50,故答案为50【点睛】本题考查角度的求解,解题的关键是利用垂径定理.14、0.5m3【解析】根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可【详解】点P(m3,12m)在第三象限,解得:0.5m3.故答案为:0.5m3.【点睛】本题考查了解一元二次方程组与象限及点的坐标的有关性质,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.15
16、、2【解析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得OPC=30,则COP=60,可得OCB是等边三角形,从而得结论【详解】连接OC,PC是O的切线,OCPC,OCP=90,PC=2,OC=2,OP=4,OPC=30,COP=60,OC=OB=2,OCB是等边三角形,BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型16、【解析】设每只雀、燕的重量各为x两,y两,由题意得: 故答案是:或 17、【解析】试题分析:用周长除以2即为圆锥的底面半径;根据圆锥的侧面积=侧面展开
17、图的弧长母线长可得圆锥的母线长,利用勾股定理可得圆锥的高试题解析:圆锥的底面周长为6, 圆锥的底面半径为 62=3, 圆锥的侧面积=侧面展开图的弧长母线长,母线长=2126=4, 这个圆锥的高是考点:圆锥的计算18、+【解析】试题分析:如图,连接OC,EC,由题意得OCDOCE,OCDE,DE=,所以S四边形ODCE=1=,SOCD=,又SODE=11=,S扇形OBC=,所以阴影部分的面积为:S扇形OBC+SOCDSODE=+;故答案为考点:扇形面积的计算三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、-1【解析】先化简,再选出一个合适的整数代入即可,要注
18、意a的取值范围.【详解】解:,当时,原式【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.20、(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:120050%=2400个,A品牌所占的圆心角:360=60;故答案为2400,60;(2)B品牌鸡蛋的数量为:24004001200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:1500=500个21、15cm【解析
19、】试题分析:设细线OB的长度为xcm,作ADOB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在RtAOD中,由三角函数得出方程,解方程即可试题解析:设细线OB的长度为xcm,作ADOB于D,如图所示:ADM=90,ANM=DMN=90,四边形ANMD是矩形,AN=DM=14cm,DB=145=9cm,OD=x9,在RtAOD中,cosAOD=,cos66=0.40,解得:x=15,OB=15cm22、【解析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案【详解】解:原式=【点睛】本题考查了负指数幂的性质
20、以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.23、吉普车的速度为30千米/时.【解析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案【详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:.解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意. 答:吉普车的速度为30千米/时. 点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用为中考常见题型,要求学生牢固掌握注意检验24、【解析】由题意可知:菱形ABCD的边长是5,则AO2+BO2=25
21、,则再根据根与系数的关系可得:AO+BO=(2m1),AOBO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值【详解】解:,的长分别是关于的方程的两根,设方程的两根为和,可令,四边形是菱形,在中:由勾股定理得:,则,由根与系数的关系得:,整理得:,解得:,又,解得,【点睛】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法25、(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队
22、单独需要5天完成,可得出方程,解出即可(2)先计算甲、乙合作需要的时间,然后计算费用即可【详解】解:(1)设这项工程规定的时间是x天 根据题意,得 解得x20经检验,x20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间(天)(65003500)12120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答26、(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台【解析】(1
23、)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;(2)设采购A种型号电器a台,则采购B种型号电器(50a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案【详解】解:(1)设A型电器销售单价为x元,B型电器销售单价y元,则 ,解得:,答:A型电器销售单价为200元,B型电器销售单价150元;(2)设A型电器采购a台,则160a120(50a)7500,解得:a,则
24、最多能采购37台;(3)设A型电器采购a台,依题意,得:(200160)a(150120)(50a)1850,解得:a35,则35a,a是正整数,a36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解27、(1)m1;(2)3m1【解析】试题分析:(1)根据判别式的意义得到=(-6)2-1(2m+1)0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x220得到2(2m+1)+620,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围试题解析:(1)根据题意得(6)21(2m1)0, 解得m1; (2)根据题意得x1x26,x1x22m1, 而2x1x2x1x220,所以2(2m1)620, 解得m3,而m1,所以m的范围为3m1