《湖北省武汉十三中学2023届中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省武汉十三中学2023届中考数学四模试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,在菱形纸片ABCD中,AB=4,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上则sinAFG的值为( )ABCD2下列立体图形中,主视图是三角形的是( )ABCD3如图,在平面直角坐标系中,矩形
2、OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A()B()C()D()42017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%数据3122亿元用科学记数法表示为()A312210 8元B3.12210 3元C312210 11 元D3.12210 11 元5如图,若数轴上的点A,B分别与实数1,1对应,用圆规在数轴上画
3、点C,则与点C对应的实数是()A2B3C4D56下列计算正确的是()AB(a2)3=a6CD6a22a=12a37如图,若ABCD,则、之间的关系为()A+=360B+=180C+=180D+=1808如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )A点AB点BC点CD点D9有一种球状细菌的直径用科学记数法表示为2.16103米,则这个直径是()A216000米B0.00216米C0.000216米D0.0000216米10一个多边形内角和是外角和的2倍,它是( )A五边形B六边形C七边形D八边形二、填空题(本大题共6个小题,每小题3分,共18分)11不等式52x1的解
4、集为_12让我们轻松一下,做一个数字游戏: 第一步:取一个自然数,计算得; 第二步:算出的各位数字之和得,计算得; 第三步:算出的各位数字之和得,再计算得; 依此类推,则_13因式分解:3x23x=_14若分式的值为零,则x的值为_15已知(x+y)225,(xy)29,则x2+y2_16正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y与x的函数关系式为_三、解答题(共8题,共72分)17(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调
5、查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为w元求w与x之间的函数关系式该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?18(8分)已知:AB为O上一点,如图,BH与O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使,连结BF并延长BF交O于点G,求BG的长;(3)在(2)的条件下,连结GC并延长GC交BH于点D,求证:19(8分)如图,安徽江淮集团某部门研
6、制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,求末端操作器节点到地面直线的距离.(结果保留根号)20(8分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得ACF=45,再向前走300米到点D处,测得BDF=60若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数
7、)21(8分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率22(10分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图),图是平面图光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55,乙同学站在岩石B处测得叶片的最高位置D的仰角是45(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为2
8、3米,BGGH,CHAH,求塔杆CH的高(参考数据:tan551.4,tan350.7,sin550.8,sin350.6)23(12分)如图所示,在ABC中,BO、CO是角平分线ABC50,ACB60,求BOC的度数,并说明理由题(1)中,如将“ABC50,ACB60”改为“A70”,求BOC的度数若An,求BOC的度数24(1)(问题发现)小明遇到这样一个问题:如图1,ABC是等边三角形,点D为BC的中点,且满足ADE=60,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系(1)小明发现,过点D作DF/AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题
9、得到解决,请直接写出AD与DE的数量关系: ;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出ABC与ADE的面积之比参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE由题意可得:DE=1,HDE=60,BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sinAFG的值【详解】解:如图:过点E作HEAD于点
10、H,连接AE交GF于点N,连接BD,BE四边形ABCD是菱形,AB=4,DAB=60,AB=BC=CD=AD=4,DAB=DCB=60,DCABHDE=DAB=60,点E是CD中点DE=CD=1在RtDEH中,DE=1,HDE=60DH=1,HE= AH=AD+DH=5在RtAHE中,AE=1 AN=NE=,AEGF,AF=EFCD=BC,DCB=60BCD是等边三角形,且E是CD中点BECD,BC=4,EC=1BE=1CDABABE=BEC=90在RtBEF中,EF1=BE1+BF1=11+(AB-EF)1EF=由折叠性质可得AFG=EFG,sinEFG= sinAFG = ,故选B.【点睛
11、】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键2、A【解析】考查简单几何体的三视图根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意故选A【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看3、A【解析】直接利用相似三角形的判定与性质得出ONC1三边关系,再利用勾股定理得出答案【详解】过点C1作C1Nx轴于点N,过点A1作A1Mx轴于点M,由题意可得:C1NO=A1MO=
12、90,1=2=1,则A1OMOC1N,OA=5,OC=1,OA1=5,A1M=1,OM=4,设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,)故选A【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出A1OMOC1N是解题关键4、D【解析】可以用排除法求解.【详解】第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.【点睛】牢记科学记数法的规则是解决这一类题的关键.5、B【解析】由数轴上的点A、B 分别与实数1,1对应,即可求得AB=2,再根据半径相等得到BC=
13、2,由此即求得点C对应的实数【详解】数轴上的点 A,B 分别与实数1,1 对应,AB=|1(1)|=2,BC=AB=2,与点 C 对应的实数是:1+2=3. 故选B【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键6、D【解析】根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.【详解】,A选项错误;(a2)3=- a6,B错误;,C错误;. 6a22a=12a3 ,D正确;故选:D.【点睛】本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.7、C【解析】过点E作EFAB,如图,易得CDEF,然后根据平行线的性质可得
14、BAE+FEA=180,C=FEC=,进一步即得结论【详解】解:过点E作EFAB,如图,ABCD,ABEF,CDEF,BAE+FEA=180,C=FEC=,FEA=,+()=180,即+=180故选:C【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EFAB、熟练掌握平行线的性质是解题的关键8、B【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小故选B9、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字
15、前面的0的个数所决定【详解】2.16103米0.00216米故选B【点睛】考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、B【解析】多边形的外角和是310,则内角和是2310720设这个多边形是n边形,内角和是(n2)180,这样就得到一个关于n的方程,从而求出边数n的值【详解】设这个多边形是n边形,根据题意得:(n2)1802310解得:n1故选B【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决二、填空题(本
16、大题共6个小题,每小题3分,共18分)11、x1【解析】根据不等式的解法解答.【详解】解:, .故答案为【点睛】此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.12、1【解析】根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,20193=673,a2019= a3=1,故答案为:1【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019
17、的值13、3x(x1)【解析】原式提取公因式即可得到结果【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键14、1【解析】试题分析:根据题意,得|x|-1=0,且x-10,解得x=-1考点:分式的值为零的条件15、17【解析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y)2=25,x2+y2+2xy=25;(xy)2=9, x2+y2-2xy=9,所以x2+y2=17.【点睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等价变形:,.16、y=2x26x+2【解析】
18、由AAS证明DHEAEF,得出DE=AF=x,DH=AE=1-x,再根据勾股定理,求出EH2,即可得到y与x之间的函数关系式【详解】如图所示:四边形ABCD是边长为1的正方形,A=D=20,AD=11+2=20,四边形EFGH为正方形,HEF=20,EH=EF1+1=20,2=1,在AHE与BEF中,DHEAEF(AAS),DE=AF=x,DH=AE=1-x,在RtAHE中,由勾股定理得:EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;即y=2x2-6x+2(0x1),故答案为y=2x2-6x+2【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出
19、y与x之间的函数关系式是解题的关键三、解答题(共8题,共72分)17、 (1);(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元【解析】(1)根据销售额=销售量销售价单x,列出函数关系式(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值【详解】解:(1)由题意得:,w与x的函数关系式为:(2),20,当x=30时,w有最大值w最大值为2答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售
20、利润2元(3)当w=150时,可得方程2(x30)2+2=150,解得x1=25,x2=3328,x2=3不符合题意,应舍去答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元18、 (1) CE=4;(2)BG=8;(3)证明见解析.【解析】(1)只要证明ABCCBE,可得,由此即可解决问题;(2)连接AG,只要证明ABGFBE,可得,由BE4,再求出BF,即可解决问题;(3)通过计算首先证明CFFG,推出FCGFGC,由CFBD,推出GCFBDG,推出BDGBGD即可证明【详解】解:(1)BH与O相切于点B,ABBH,BHCE,CEAB,AB是直径,CEB=ACB=90,CB
21、E=ABC,ABCCBE,AC=,CE=4(2)连接AGFEB=AGB=90,EBF=ABG,ABGFBE,BE=4,BF= ,BG=8(3)易知CF=4+=5,GF=BGBF=5,CF=GF,FCG=FGC,CFBD,GCF=BDG,BDG=BGD,BG=BD【点睛】本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键19、()cm.【解析】作BGCD,垂足为G,BHAF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【详解】如图,作BGCD,垂足为G,BHAF,垂足为H,在中,BCD=60,BC=60cm,在中,B
22、AF=45,AB=60cm,D到L的距离.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.20、215.6米【解析】过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点,根据RtACM和三角函数求出CM、DN,然后根据即可求出A、B两点间的距离.【详解】解:过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点在RtACM中,AM=CM=200米,又CD=300米,所以米,在RtBDN中,BDF=60,BN=200米米,米即A,B两点之间的距离约为215.6米【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.2
23、1、.【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,P(A,C两个区域所涂颜色不相同)=.考点:1画树状图或列表法;2概率22、塔杆CH的高为42米【解析】作BEDH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtanCAH=tan55x知CE=CH-EH=tan55x-4,根据BE=DE可得关于x的方程,解之可得【详解】解:如图,作BEDH于点E,则GH=BE、BG=EH
24、=4,设AH=x,则BE=GH=GA+AH=23+x,在RtACH中,CH=AHtanCAH=tan55x,CE=CHEH=tan55x4,DBE=45,BE=DE=CE+DC,即23+x=tan55x4+15,解得:x30,CH=tan55x=1.430=42,答:塔杆CH的高为42米【点睛】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形23、(1)125;(2)125;(3)BOC=90+n【解析】如图,由BO、CO是角平分线得ABC=21,ACB=22,再利用三角形内角和得到ABC+ACB+A=180,则21+22+A=180,接着再根据三角形内角和
25、得到1+2+BOC=180,利用等式的性质进行变换可得BOC=90+A,然后根据此结论分别解决(1)、(2)、(3)【详解】如图,BO、CO是角平分线,ABC=21,ACB=22,ABC+ACB+A=180,21+22+A=180,1+2+BOC=180,21+22+2BOC=360,2BOCA=180,BOC=90+A,(1)ABC=50,ACB=60,A=1805060=70,BOC=90+70=125;(2)BOC=90+A=125;(3)BOC=90+n【点睛】本题考查了三角形内角和定理:三角形内角和是180主要用在求三角形中角的度数:直接根据两已知角求第三个角;依据三角形中角的关系,
26、用代数方法求三个角;在直角三角形中,已知一锐角可利用两锐角互余求另一锐角24、(1)AD=DE;(2)AD=DE,证明见解析;(3)【解析】试题分析:本题难度中等主要考查学生对探究例子中的信息进行归纳总结并能够结合三角形的性质是解题关键试题解析:(10分)(1)AD=DE(2)AD=DE证明:如图2,过点D作DF/AC,交AC于点F,ABC是等边三角形,AB=BC,B=ACB=ABC=60又DF/AC,BDF=BFD=60BDF是等边三角形,BF=BD,BFD=60,AF=CD,AFD=120EC是外角的平分线,DCE=120=AFDADC是ABD的外角,ADC=B+FAD=60+FADADC=ADE+EDC=60+EDC,FAD=EDCAFDDCE(ASA),AD=DE;(3)考点:1等边三角形探究题;2全等三角形的判定与性质;3等边三角形的判定与性质