《福建省泉州市南安市达标名校2022-2023学年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《福建省泉州市南安市达标名校2022-2023学年中考数学全真模拟试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知等边三角形的内切圆半径,外接圆半径和高的比是()A1:2:B2:3:4C1:2D1:2:32如图,PA、PB切O于A、B两点,AC是O的直径,P=40,则ACB度数是()A50B60C70D803计算(18)9的值是( )A-9B-27C-2D
2、24对于反比例函数,下列说法不正确的是()A点(2,1)在它的图象上B它的图象在第一、三象限C当x0时,y随x的增大而增大D当x0时,y随x的增大而减小5不等式组的解集在数轴上可表示为()ABCD6下列运算正确的是()Ax4+x4=2x8 B(x2)3=x5 C(xy)2=x2y2 Dx3x=x47如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰OBC,将点C向左平移5个单位,使其对应点C恰好落在直线AB上,则点C的坐标为()A(3,3)B(4,3)C(1,3)D(3,4)8如图所示的几何体,它的左视图是( )ABCD9把抛物线y2x2向上平移1个单位,得到的抛物
3、线是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)210某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A28109B2.8108C2.8109D2.8101011工信部发布中国数字经济发展与就业白皮书(2018)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位“1.21万”用科学记数法表示为()A1.21103 B12.1103 C1.21104 D0.12110512小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没
4、在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若am=5,an=6,则am+n=_14如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为_.15若关于x的方程有两个相等的实数根,则m的值是_16计算:3(2)=_17如图,已知ABC中,ABAC5,BC8,将ABC沿射线BC方向平移m个单位得到DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是_18如图,身高1.6
5、米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(1)2018+()120(6分)先化简,再求值:a(a3b)+(a+b)2a(ab),其中a=1,b=21(6分)如图,在矩形ABCD中,AB2,AD=,P是BC边上的一点,且BP=2CP(1)用尺规在图中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图,在(1)的条体下,判断EB是否平分AEC,并说明理由;(3)如图,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助
6、线,PFB能否由都经过P点的两次变换与PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)22(8分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在ABC内,CAE+CBE=1(1)如图,当四边形ABCD和EFCG均为正方形时,连接BFi)求证:CAECBF;ii)若BE=1,AE=2,求CE的长;(2)如图,当四边形ABCD和EFCG均为矩形,且时,若BE1,AE=2,CE=3,求k的值;(3)如图,当四边形ABCD和EFCG均为菱形,且DAB=GEF=45时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关
7、系(直接写出结果,不必写出解答过程)23(8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.24(10分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连
8、接ED,抛物线()过E,A两点(1)填空:AOB= ,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围25(10分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45、木瓜B的仰角为30求C处到树干DO
9、的距离CO(结果精确到1米)(参考数据:,)26(12分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值27(12分)国家发改委公布的商品房销售明码标价规定,从20
10、11年5月1日起商品房销售实行一套一标价商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:打9.8折销售;不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、
11、D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角OCD中,DOC=60,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比是1:2:1故选D考点:正多边形和圆2、C【解析】连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。【详解】连接BC.PA,PB是圆的切线在四边形中,所以是直径故答案选C.【点睛】本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。3、C【解析】直接利用有理数的除法运算法则计算得出答案【详解】解
12、:(-18)9=-1故选:C【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键4、C【解析】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x0时,y随x的增大而减小,所以C错误;D中,当x0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化5、A【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解: 不
13、等式得:x1,解不等式得:x2,不等式组的解集为1x2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.6、D【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (xy)2=x22xy+y2 ,故错误; D. x3x=x4,正确,故选D.7、B【解析】令x=0,y=6,B(0,6),等腰OBC,点C在线段OB的垂直平分线上,设C(a,3),则C (a5,3),3=3(a5)+6,解得a=4,C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.8、A【解析
14、】从左面观察几何体,能够看到的线用实线,看不到的线用虚线【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键9、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键10、D【解析】根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1a10,n为整数)与10的幂相乘的形式,这种
15、记数法叫做科学记数法,280亿用科学计数法表示为2.81010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.11、C【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:1.21万=1.21104,故选:C点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值12、A【解析】圆柱体的底面积为:()2
16、,矿石的体积为:()2h= .故答案为.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据同底数幂乘法性质aman=am+n,即可解题.【详解】解:am+n= aman=56=1.【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.14、-1【解析】试题分析:正方形ADEF的面积为4,正方形ADEF的边长为2,BF=2AF=4,AB=AF+BF=2+4=1设B点坐标为(t,1),则E点坐标(t-2,2),点B、E在反比例函数y=的图象上,k=1t=2(t-2),解得t=-1,k=-1考点:反比例函数系数k的几何意义15、m=- 【解析】根据题意可以得到=
17、0,从而可以求得m的值【详解】关于x的方程有两个相等的实数根,=,解得:.故答案为.16、2+2【解析】根据平面向量的加法法则计算即可【详解】3(2)=3+2=2+2,故答案为:2+2,【点睛】本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键17、或5或1【解析】根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可【详解】解:如图(1)当在ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:则AN=3,AC=,AD
18、=m,得:,得m=,综上所述:m为或5或1,所以答案:或5或1【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.18、6.4【解析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案【详解】原式=1+13=1【点睛】本题主要考查了实数运算,正确化简各数是解题的关键20、 【解析】原式去括号合并得到最简结
19、果,把a与b的值代入计算即可求出值;【详解】解:原式=a23ab+a2+2ab+b2a2+ab=a2+b2,当a=1、b=时,原式=12+()2=1+=【点睛】考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键21、(1)作图见解析;(2)EB是平分AEC,理由见解析; (3)PFB能由都经过P点的两次变换与PAE组成一个等腰三角形,变换的方法为:将BPF绕点B顺时针旋转120和EPA重合,沿PF折叠,沿AE折叠【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出ADEBCE,得出AED=BEC,再用锐角三角函数求
20、出AED,即可得出结论;(3)先判断出AEPFBP,即可得出结论【详解】(1)依题意作出图形如图所示;(2)EB是平分AEC,理由:四边形ABCD是矩形,C=D=90,CD=AB=2,BC=AD=,点E是CD的中点,DE=CE=CD=1,在ADE和BCE中,ADEBCE,AED=BEC,在RtADE中,AD=,DE=1,tanAED=,AED=60,BCE=AED=60,AEB=180AEDBEC=60=BEC,BE平分AEC;(3)BP=2CP,BC=,CP=,BP=,在RtCEP中,tanCEP=,CEP=30,BEP=30,AEP=90,CDAB,F=CEP=30,在RtABP中,tan
21、BAP=,PAB=30,EAP=30=F=PAB,CBAF,AP=FP,AEPFBP,PFB能由都经过P点的两次变换与PAE组成一个等腰三角形,变换的方法为:将BPF绕点B顺时针旋转120和EPA重合,沿PF折叠,沿AE折叠【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出AEPFBP是解本题的关键22、(1)i)证明见试题解析;ii);(2);(3)【解析】(1)i)由ACE+ECB=45, BCF+ECB=45,得到ACE=BCF,又由于,故CAECBF;ii)由,得到BF=,再由CAECBF,得到CAE=CBF,进
22、一步可得到EBF=1,从而有,解得;(2)连接BF,同理可得:EBF=1,由,得到,故,从而,得到,代入解方程即可;(3)连接BF,同理可得:EBF=1,过C作CHAB延长线于H,可得:,故,从而有【详解】解:(1)i)ACE+ECB=45, BCF+ECB=45,ACE=BCF,又,CAECBF;ii),BF=,CAECBF,CAE=CBF,又CAE+CBE=1,CBF+CBE=1,即EBF=1,解得;(2)连接BF,同理可得:EBF=1,解得;(3)连接BF,同理可得:EBF=1,过C作CHAB延长线于H,可得:,【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质
23、23、 (1);(2).【解析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) “美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,任取一个球,摸出球上的汉字刚好是“美”的概率P=(2)列表如下:美丽光明美-(美,丽)(光,美)(美,明)丽(美,丽)-(光,丽)(明,丽)光(美,光)(光,丽)-(光,明)明(美,明)(明,丽)(光,明)-根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两
24、个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比24、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到
25、m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案
26、为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2m,0),P(2m,m),A为抛物线的顶点,设抛物线解析式为,抛物线过点E(0,n),即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得
27、:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则,解得:am=2,m=2,a=1,则抛物线与四边形ABCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题25、解:设OC=x,在RtAOC中,ACO=45,OA=OC=x在RtBOC中,BCO=30,AB=OAOB=,解得OC=5米答:C处到树干DO的距离CO为5米【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值【分析】设OC=x,在RtAOC中,由于ACO=45,故OA=x,在RtBOC中,由于BCO=30,故,再根据
28、AB=OAOB=2即可得出结论26、 (1)y=3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,从而可以得到y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数【详解】(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,根据题意得:y=100
29、.7x+40.5(1x+1)+60.8(123x)=3.4x+141.1(1)根据题意得:,解得:7x,x为整数,7x210.60,y随x增大而减小,当x=7时,y取最大值,最大值=3.47+141.1=117.4,此时:1x+1=12,123x=1答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.27、 (1) 每次下调10% (2) 第一种方案更优惠【解析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答【详解】解:(1)设平均每次下调的百分率为x,根据题意得5000(1-x)2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%(2)9.8折=98%,100405098%=396900(元)1004050-1001.5122=401400(元),396900401400,所以第一种方案更优惠答:第一种方案更优惠【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.