《江西省抚州市南城一中2023届高考适应性考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省抚州市南城一中2023届高考适应性考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行下面的程序框图,则输出的值为 ( )ABCD2若函数()的图象过点,则( )A函数的值域是B点是的一个对称中心C函数的最小正周期是D直线是的一条对称轴3易经包含着很多哲理,在信息学、天文
2、学中都有广泛的应用,易经的博大精深,对今天 的几何学和其它学科仍有深刻的影响下图就是易经中记载的几何图形八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田已知正八边 形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为( )ABCD4小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( )ABCD5设i为虚数单位,若复数,则复数z等于( )ABCD06函数的图象如图所示,为了得到的图象,可将的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位7下列四个图象可能是函数图
3、象的是( )ABCD8由实数组成的等比数列an的前n项和为Sn,则“a10”是“S9S8”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9已知方程表示的曲线为的图象,对于函数有如下结论:在上单调递减;函数至少存在一个零点;的最大值为;若函数和图象关于原点对称,则由方程所确定;则正确命题序号为( )ABCD10对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,.下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )发芽所需天数1234567种子数43352210A2B3C3.5D411已知命题,那么为( )ABCD12已知
4、抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D5二、填空题:本题共4小题,每小题5分,共20分。13某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:满意度评分分组合计高一1366420高二2655220根据评分,将家长的满意度从低到高分为三个等级:满意度评分评分70分70评分90评分90分满意度等级不满意满意非常满意假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件:“高一家长的满意度等级高于高二家长的满意度等级”,则事件发生的
5、概率为_.14已知函数,若函数有6个零点,则实数的取值范围是_.15在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为_.16展开式中项系数为160,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知分别是的内角的对边,且()求()若,求的面积()在()的条件下,求的值18(12分)4月23日是“世界读书日”,某中学开展了一系列的读书教育活动学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名
6、学生参加问卷调查各组人数统计如下:小组甲乙丙丁人数12969(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用表示抽得甲组学生的人数,求随机变量的分布列和数学期望19(12分)如图,平面四边形为直角梯形,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.20(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.21(12分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,为的中点.(1)求证:平面;(2)
7、求二面角的大小.22(10分)已知函数,为的导数,函数在处取得最小值(1)求证:;(2)若时,恒成立,求的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据框图,模拟程序运行,即可求出答案.【详解】运行程序,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.2、A【解析】根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,故,对于A,由,则,故A正确;对于B,当时,故B错误;对于C,故C错误;对于D,当时,
8、故D错误;故选:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.3、B【解析】由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.4、A【解析】利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.【详解】从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是
9、自己的作业本有种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.故选:A.【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.5、B【解析】根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.6、C【解析】根据正弦型函数的图象得到,结合图像变换知识得到答案.【详解】由图象知:,.又时函数值最大,所以.又,从而,只需将的图象向左平移个单位即可得到的图象,故选C.【点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求7、C【解析】首先求出
10、函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,为奇函数,图象关于原点对称,的图象关于点成中心对称.可排除A、D项.当时,B项不正确.故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.8、C【解析】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若an是等比数列,则,若,则,即成立,若成立,则,即,故“”是“”的充要条件,故选:C.【
11、点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.9、C【解析】分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,此时不存在图象;(2)当时,此时为实轴为轴的双曲线一部分;(3)当时,此时为实轴为轴的双曲线一部分;(4)当时,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于,在上单调递减,所以正确;对于,函数与的图象没有交点,即没有零点,所以错误;对于,由函数图象的对称性可知错误;对于,函数和图象关于原点对称,则中用代替,用代替,可得,所以正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,
12、函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.10、C【解析】根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为,故选:C.【点睛】本题考查中位数的计算,属基础题.11、B【解析】利用特称命题的否定分析解答得解.【详解】已知命题,那么是.故选:【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.12、D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查
13、应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.二、填空题:本题共4小题,每小题5分,共20分。13、0.42【解析】高一家长的满意度等级高于高二家长的满意度等级有三种情况,分别求出三种情况的概率,再利用加法公式即可.【详解】由已知,高一家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高二家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高一家长的满意度等级高于高二家长的满意度等级有三种情况:1.高一家长满意,高二家长不满意,其概率为;2.高一家长
14、非常满意,高二家长不满意,其概率为;3.高一家长非常满意,高二家长满意,其概率为.由加法公式,知事件发生的概率为.故答案为:【点睛】本题考查独立事件的概率,涉及到概率的加法公式,是一道中档题.14、【解析】由题意首先研究函数的性质,然后结合函数的性质数形结合得到关于a的不等式,求解不等式即可确定实数a的取值范围.【详解】当时,函数在区间上单调递增,很明显,且存在唯一的实数满足,当时,由对勾函数的性质可知函数在区间上单调递减,在区间上单调递增,结合复合函数的单调性可知函数在区间上单调递减,在区间上单调递增,且当时,考查函数在区间上的性质,由二次函数的性质可知函数在区间上单调递减,在区间上单调递增
15、,函数有6个零点,即方程有6个根,也就是有6个根,即与有6个不同交点,注意到函数关于直线对称,则函数关于直线对称,绘制函数的图像如图所示,观察可得:,即.综上可得,实数的取值范围是.故答案为【点睛】本题主要考查分段函数的应用,复合函数的单调性,数形结合的数学思想,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.15、2022【解析】根据条件先求出数列的通项,利用累加法进行求解即可【详解】,下面求数列的通项,由题意知,数列是递增数列,且,的最小值为.故答案为:.【点睛】本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键综合性较强,属于难题16、-2【解析】表
16、示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();();().【解析】()由已知结合正弦定理先进行代换,然后结合和差角公式及正弦定理可求;()由余弦定理可求,然后结合三角形的面积公式可求;()结合二倍角公式及和角余弦公式即可求解【详解】()因为,所以,所以,由正弦定理可得,;()由余弦定理可得,整理可得,解可得,因为,所以;()由于,所以【点睛】本题主要考查了正弦定理、余弦定理、
17、和角余弦公式,二倍角公式及三角形的面积公式的综合应用,意在考查学生对这些知识的理解掌握水平18、(1)(2)见解析, 【解析】(1)采用分层抽样的方法甲组抽取4人,乙组抽取3人,丙组抽取2人,丁组抽取3人,从参加问卷调查的12名学生中随机抽取2人,基本事件总数为,这两人来自同一小组取法共有,由此可求出所求的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,而甲、丙两个小组学生分别有4人和2 人,所以抽取的两人中是甲组的学生的人数的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量的分布列和数学期望.【详解】(1)由题设易得,问卷调查从四个小组中抽取的人数分别为4,3,2,3(
18、人),从参加问卷调查的12名学生中随机抽取两名的取法共有(种),抽取的两名学生来自同一小组的取法共有(种),所以,抽取的两名学生来自同一个小组的概率为(2)由(1)知,在参加问卷调查的12名学生中,来自甲、丙两小组的学生人数分别为4人、2人,所以,抽取的两人中是甲组的学生的人数的可能取值为0,1,2,因为所以随机变量的分布列为:012所求的期望为【点睛】此题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查分层抽样、古典概型、排列组合等知识,考查运算能力,属于中档题.19、(1);(2).【解析】(1)连接交于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定
19、理可求得的值;(2)取中点,连接、,过点作,则,作于,连接,推导出,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.【详解】(1)连接交于点,连接,平面,平面,平面平面,在梯形中,则,所以,;(2)取中点,连接、,过点作,则,作于,连接. 为的中点,且,且,所以,四边形为平行四边形,由于,为的中点,所以,同理,平面,为面与面所成的锐二面角,则,平面,平面,面,为与底面所成的角,.在中,.因此,与平面所成角的正弦值为.【点睛】本题考查利用线面平行的性质求参数,同时也考查了线面角的计算,涉及利用二面角求线段长度,考查推理能力
20、与计算能力,属于中等题.20、(1);(2).【解析】(1)对范围分类整理得:,分类解不等式即可(2)利用已知转化为“当时,”恒成立,利用绝对值不等式的性质可得:,问题得解【详解】当时,当时,由得,解得;当时,无解;当时,由得,解得,所以的解集为(2)的解集包含等价于在上恒成立,当时,等价于恒成立,而,故满足条件的的取值范围是【点睛】本题主要考查了含绝对值不等式的解法,还考查了转化能力及绝对值不等式的性质,考查计算能力,属于中档题21、(1)证明见解析(2)【解析】(1)连接,交与,连接,由,得出结论;(2)以为原点,分别为,轴建立空间直角坐标系,求出平面的法向量,利用夹角公式求出即可.【详解
21、】(1)连接,交与,连接,在中,又平面,平面,所以平面;(2)由平面平面,为平面与平面的交线,故平面,故,又,所以平面,以为原点,分别为,轴建立空间直角坐标系,设平面的法向量为,由,得,平面的法向量为,由,故二面角的大小为.【点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.22、(1)见解析; (2).【解析】(1)对求导,令,求导研究单调性,分析可得存在使得,即,即得证;(2)分,两种情况讨论,当时,转化利用均值不等式即得证;当,有两个不同的零点,分析可得的最小值为,分,讨论即得解.【详解】(1)由题意,令,则,知为的增函数,因为,所以,存在
22、使得,即所以,当时,为减函数,当时,为增函数,故当时,取得最小值,也就是取得最小值故,于是有,即,所以有,证毕(2)由(1)知,的最小值为,当,即时,为的增函数,所以,由(1)中,得,即故满足题意当,即时,有两个不同的零点,且,即,若时,为减函数,(*)若时,为增函数,所以的最小值为注意到时,且此时,()当时,所以,即,又,而,所以,即由于在下,恒有,所以()当时,所以,所以由(*)知时,为减函数,所以,不满足时,恒成立,故舍去故满足条件综上所述:的取值范围是【点睛】本题考查了函数与导数综合,考查了利用导数研究函数的最值和不等式的恒成立问题,考查了学生综合分析,转化划归,分类讨论,数学运算能力,属于较难题.